

DEPARTEMENT BAU, VERKEHR UND UMWELT

Abteilung Tiefbau

Suhr, Gränichen, Oberentfelden

IO/AO

STRASSE Verkehrsinfrastruktur - Entwicklung Raum Suhr (VERAS)

K235, NK241, NK240, K242, K108

BEREICH

OBJEKT Los 0

Umwelt

Umweltverträglichkeitsbericht

Beilagen 1 bis 3 (Bodenuntersuchungen Jäckli AG)

PROJEKTVERFASSER

gruner >

BAUHERR

Gruner AG St. Jakobs-Strasse 199 CH-4020 Basel

Abteilung Tiefbau Realisierung

Kai Hitzfeld Teilprojektleiter Umwelt PS-Nr.: 640-203830

Ka. Kilydd

Andreas Drohomirecki Projektleiter ATB

Erstellt: 31.05.2024

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 1) Suhr / AG

Bericht Bodenuntersuchung

Zürich, 15. September 2022

Bauherrschaft: Kanton Aargau, Departement Bau, Verkehr und Umwelt, Abteilung Tiefbau,

Entfelderstrasse 22, 5001 Aarau

Bauingenieur: Team Fürst Laffranchi, Eyhalde 2, 4912 Aarwangen

Objektnummer: 150249

INHALT

1	EINLEITUNG	3
1.1 1.2 1.3		3 3
2 2.1 2.2	DURCHGEFÜHRTE UNTERSUCHUNGEN Profilaufnahmen Untersuchung chemische Belastung	4 4 4
3 3.1 3.2		5 5 6
4	WEITERES VORGEHEN	8
4.1 4.2		8
TAE	BELLEN	
Tab	elle 1: Angetroffene Bodeneigenschaften gemäss [6] und [7]	5
Tab	elle 2: Angetroffener Boden	7

BEILAGEN

- Beilage 1: Übersichtsplan 1:2'000, Lage der Sondierungen mit Angaben zu den Bodenbelastungen
- Beilage 2: Boden-Profilblätter
- Beilage 3: Fotodokumentation Bodenprofile
- Beilage 4: Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

1 EINLEITUNG

1.1 Ausgangslage und Auftrag

Die Abteilung Tiefbau des Departements Bau, Verkehr und Umwelt (DBVU) des Kantons Aargau plant für die Verkehrsinfrastruktur-Entwicklung Raum Suhr (VERAS) die Realisierung der Südumfahrung Suhr (NK240) und der Ostumfahrung Suhr (NK241).

Für das Bauprojekt waren ergänzende Bodenuntersuchungen durchzuführen und in einem schriftlichen Bericht zu dokumentieren. Den entsprechenden Auftrag erteilte die Abteilung Tiefbau des DBVU mit Vertrag vom 24.2.2022.

1.2 Projektperimeter

Der Projektperimeter liegt am östlichen Siedlungsrand von Suhr / AG auf ca. 395 m ü.M. Er ist in *Beilage 1* eingezeichnet.

Für die Gemeinde Suhr liegt keine kantonale Bodenkarte vor. Gemäss früheren Bohrstockaufnahmen [1] sind im Projektperimeter tiefgründige Braunerden vorhanden.

1.3 Grundlagen

Frühere Berichte

In der Umgebung des Projektareals sind in der Vergangenheit bereits verschiedene geologische und bodenfachkundige Abklärungen erfolgt. Die Erkenntnisse sind in den folgenden beiden Berichten dokumentiert:

- [1] Gruner AG (29.3.2019): Umweltverträglichkeitsbericht Voruntersuchung, Trassee Ostumfahrung Suhr, Suhr / Gränichen IO / AO NK241.
- [2] Jäckli Geologie AG (31.8.2022): NK241 Ostumfahrung Suhr (Los 1), Suhr / AG, Geologisch-geotechnischer Bericht.

Bodenschutz

Fruchtbarer Boden ist ein in Jahrtausenden entstandenes, wertvolles Gut, das kurzfristig weder ersetzt noch erneuert werden kann. Gemäss der Verordnung über Belastungen des Bodens (VBBo) darf Boden durch Bauarbeiten nicht geschädigt werden und die Bodenfruchtbarkeit muss erhalten bleiben. Im Weiteren dürfen chemische Bodenbelastungen nicht verschleppt werden und belastete Böden sind fachgerecht zu entsorgen resp. zu verwerten.

Nachfolgend sind relevante gesetzliche und bodenfachkundige Grundlagen sowie kantonale Merkblätter aufgelistet.

- [3] Umweltschutzgesetz (USG), SR 814.01 vom 7. Oktober 1983.
- [4] Verordnung über Belastungen des Bodens (VBBo), SR 814.12 vom 1. Juli 1998.
- [5] Verordnung über die Vermeidung und die Entsorgung von Abfällen (Abfallverordnung, VVEA), SR 814.600 vom 4. Dezember 2015.
- [6] Eidgenössische Forschungsanstalt für Agrarökologie und Landbau (FAL) Zürich-Reckenholz (1997): Kartieren und Beurteilen von Landwirtschaftsböden. Publikation 24.

- [7] Bodenkundliche Gesellschaft der Schweiz BGS (2010): Klassifikation der Böden der Schweiz.
- [8] Schweizerischer Verband der Strasse- und Verkehrsfachleute VSS (31.12.2017): Erdbau, Boden; Bodenschutz und Bauen. SN 640 581.
- [9] Bundesamt für Umwelt BAFU (2020): Bauabfälle. Ein Modul der Vollzugshilfe zur Abfallverordnung, VVEA.
- [10] Bundesamt für Umwelt BAFU (2021): Beurteilung von Boden im Hinblick auf seine Verwertung. Verwertungseignung von Boden. Ein Modul der Vollzugshilfe «Bodenschutz beim Bauen».
- [11] Fachverband der Schweizerischen Kies- und Betonindustrie FSKB (2021): FSKB-Rekultivierungsrichtlinie. Richtlinie für den sachgerechten Umgang mit Boden.
- [12] Bundesamt für Umwelt BAFU (2022): Sachgerechter Umgang mit Boden beim Bauen. Bodenschutzmassnahmen auf Baustellen. Ein Modul der Vollzugshilfe «Bodenschutz beim Bauen».

2 DURCHGEFÜHRTE UNTERSUCHUNGEN

2.1 Profilaufnahmen

Zur Untersuchung der im Projektperimeter vorhandenen Böden wurden am 7. und 8.7.2022 insgesamt drei Bodenprofile bodenkundlich aufgenommen und gemäss [6] und [7] beurteilt (Lage vgl. *Beilage* 1):

- 22-1.7 Kernbohrung
- 22-1.19 Baggerschacht
- 22-1.12 Kernbohrung

2.2 Untersuchung chemische Belastung

Entlang der stark befahrenen Bernstrasse Ost besteht gemäss dem kantonalen Prüfperimeter Bodenaushub (PPBA) ein Verdacht auf chemische Belastungen.

Für die Untersuchung des Bodens wurden am 10.8.2022 parallel zur Bernstrasse Ost nach Verordnung über Belastungen des Bodens (VBBo) an drei Stellen in jeweils drei unterschiedlichen Abständen zur Strasse Linienproben entnommen (Lage vgl. *Beilage 1*).

- 22-1.23 1 m, 3 m und 7 m ab Radweg (südlich)
- 22-1.25A 1 m, 3 m und 5 m ab Strassenrand (nördlich)
- 22-1.25B Grünstreifen zw. Strasse und Radweg, 1 m und 5 m ab Radweg (südlich)

Auf jeder Linie wurden aus insgesamt 16 Einstichen aus 0.0–0.2 m und 0.2–0.4 m je zwei tiefenabhängige Mischproben erstellt. Die Mischproben wurden bodenkundlich beschrieben und im Labor nach VBBo auf Blei, Cadmium, Kupfer, Zink und Polyzyklische Aromatische Kohlenwasserstoffe (PAK) chemisch analysiert.

Innerhalb eines Streifens von 0–1 m vom Strassenrand liegt erfahrungsgemäss ohnehin eine starke Belastung mit PAK und Blei vor. Dieser «Opferstreifen» wurde daher nicht untersucht.

3 ERGEBNISSE

3.1 Bodeneigenschaften

In den Profilblättern in *Beilage 2* ist der Bodenaufbau der Sondierungen detailliert beschrieben. In *Beilage 3* sind die Bohrkerne resp. Bodenprofile fotografisch dokumentiert. Die Befunde der bodenkundlichen Aufnahmen sind in *Tabelle 1* zusammengefasst.

Tabelle 1: Angetroffene Bodeneigenschaften gemäss [6] und [7]

Sondierung	22-1.7	22-1.12	22-1.19
Profilart	Kernbohrung	Kernbohrung	Baggerschacht
Allgemeine Angaben			
Bodentyp	Kalkbraunerde	Kalkbraunerde	Kalkbraunerde
Untertypen	anthropogen	_	pseudogleyig
Ausgangsmaterial	Alluvionen / Schotter	Kolluvionen (Bachschutt)	Alluvionen / Schotter
Oberboden (A-Horizont)			
Mächtigkeit (cm)	35	30	25
Feinerdekörnung 1)	toniger Lehm	Lehm	sandiger Lehm
Skelettgehalt (Vol%) 2)	9	12	12
Unterboden (B-Horizont) 3)			
B-Horizont (cm)	115	100	75
Feinerdekörnung 1)	toniger Lehm	sandiger Lehm	sandiger Lehm
Skelettgehalt (Vol%) 2)	13	21	11
Weitere Merkmale			
Verdichtungs- empfindlichkeit ⁴⁾	schwach empfindlich	schwach empfindlich	schwach empfindlich
PNG ⁵⁾	132	105	71
Wasserhaushaltsgruppe	a	a	f
Nutzungseignungsklasse 6)	2A	1	21
Fruchtfolgefläche gem. [6]	ja	ja	ja

- 1) Feinerde: umfasst Ton (0.002–0.05 cm), Schluff (0.05–2 mm) und Sand (2–50 mm)
- 2) Skelett: umfasst Kies (0.2–5 cm) und Steine (>5 cm)
- 3) teils zusammengesetzt aus Bcn und Bg
- 4) Beurteilung nach [8]
- 5) PNG: Pflanzennutzbare Gründigkeit, Herleitung nach [6], gerundet auf ganze Zahl
- 6) Limitierender Faktor (I Stauwasser / A Bodenart)

Im Profil 22-1.7 wurde ein umgelagerter Boden angetroffen. Dessen Feinerdekörnung weist einen deutlich höheren Ton-Gehalt auf, was im Vergleich zu den anderen beiden Profilen vermutlich für die lokalen Verhältnisse nicht repräsentativ ist.

Die Profile zeigen tiefgründige bis sehr tiefgründige Kalkbraunerden, welche über Alluvionen (Schwemmsedimenten) und Schotter resp. Bachschutt entstanden sind. Die Böden weisen Nutzungsklasse (NEK) 1–2 auf und gelten damit als Fruchtfolgeflächen (FFF) 1. Güteklasse.

Die Böden sind nicht eingestaut. Gemäss [2] ist der Grundwasserspiegel selbst bei Hochwasser höchstens bei ca. 6 m u.T. zu erwarten.

3.2 Chemische Belastungen

Ergebnisse

Die für die chemischen Analysen entnommenen Mischproben sind in der *Tabelle 2* beschrieben, die Resultate sind im Laborbericht in *Beilage 4* und in *Beilage 1* grafisch dargestellt.

In allen Linienproben entlang der Bernstrasse Ost wurden Richtwertüberschreitungen gemäss VBBo für Blei, PAK, Benzo(a)pyren (BaP) sowie teilweise Kupfer und Zink nachgewiesen. In drei von 17 Proben wurde zusätzlich der Prüfwert für PAK und BaP überschritten.

Wenn keine Richtwertüberschreitungen vorliegen, gilt der Boden gemäss VBBo als *unbelastet*. Boden mit Richtwertüberschreitungen gilt als *schwach belastet*, Boden mit Prüfwertüberschreitungen als *stark belastet*.

Ausdehnung der Belastung

Für atmosphärisch und/oder mit dem Strassenabwasser in den Boden eingetragene Schadstoffe ist grundsätzlich eine Abnahme der Gehalte mit der Tiefe sowie mit zunehmender Distanz zur Strasse zu erwarten.

Eine solche Abnahme ist im vorliegenden Fall nur teilweise zu beobachten. Dies kann u.a. durch evtl. erfolgte lokale Umlagerungen bedingt sein. Eine horizontale und vertikale Eingrenzung der Belastung resp. eine zuverlässige Prognose zur Abgrenzung ist daher nicht möglich.

Tabelle 2: Angetroffener Boden

Sondierung	Tiefe (ca. m u.T.)	Farbe	Beschrieb Feinerde	Skelett (ca. Gew%)	Fremdstoffe (ca. Gew%)
22-1.25 A (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	10–15	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	<1 (Bauschutt)
22-1.25 A (3 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	<1 (Bauschutt)
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	<1 (Bauschutt)
22-1.25 A (5 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	-
22-1.25 B (Grünstreifen)	0.0-0.2	schwarzbraun	nicht formbar, sandig, körnig	15–20	<1 (Bauschutt)
22-1.25 B (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	-
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	5–10	-
22-1.25 B (4 m)	0.0-0.2	dunkelbraun	formbar, bindig, wenig klebrig	1–3	-
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	-
22-1.23 (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	10–15	-
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–5	-
22-1.23 (4 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	10–15	1 (Bauschutt)
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	5–10	<1 (Bauschutt)
22-1.23 (7 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	10–15	1
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	5–10	<1 (Bauschutt)

4 WEITERES VORGEHEN

4.1 Bodenkundliche Baubegleitung (BBB)

Im Hinblick auf die Bauausführung ist die Ausarbeitung eines Bodenschutzkonzepts erforderlich und der Bodenschutz muss während der Ausführung durch eine Bodenkundliche Baubegleitung (BBB) gewährleistet werden (voraussehbare Auflagen).

Die Baueingriffe sind so durchzuführen, dass die vorhandenen Böden in ihrer Funktion bzw. Fruchtbarkeit langfristig nicht beeinträchtigt werden.

Der Inhalt des Bodenschutzkonzepts umfasst u.a. Folgendes:

- Festlegung von projektspezifischen Bodenschutzmassnahmen.
- Detaillierte Materialbilanz für den von Umlagerungen betroffenen Boden.
- Angaben zum Verlust von FFF.
- Pflichtenheft für die Bodenkundliche Baubegleitung (BBB).

Die im vorliegenden Bericht dokumentierten Untersuchungsresultate bilden die Grundlage für das Ausarbeiten des Bodenschutzkonzepts. Ergänzende Untersuchungen, insbesondere zur Ausdehnung der chemischen Belastungen, werden nach dem Vorliegen der detaillierten Projektpläne empfohlen.

4.2 Hinweis zur Ausführbarkeit von Erdarbeiten

Zur Gewährleistung des physikalischen Bodenschutzes dürfen Erdarbeiten grundsätzlich nur bei genügend abgetrockneten Böden ausgeführt werden. Solche Bedingungen werden in der Regel nur während der Vegetationsperiode erreicht (ca. April bis Oktober). Es muss im Terminprogramm genügend Spielraum für witterungsbedingte Unterbrüche einberechnet werden. Die entsprechenden Vorgaben werden im Bodenschutzkonzept festgelegt.

Zürich, 15. September 2022

150249 Bericht_Boden Los 1.docx IB/Ke

Jäckli Geologie AG

Projektbearbeitung:

Isabel Baur, Dr. sc. nat. ETH, Umwelt-Natw., BBB BGS¹

¹ BBB BGS: BBB anerkannt durch die Bodenkundliche Gesellschaft der Schweiz

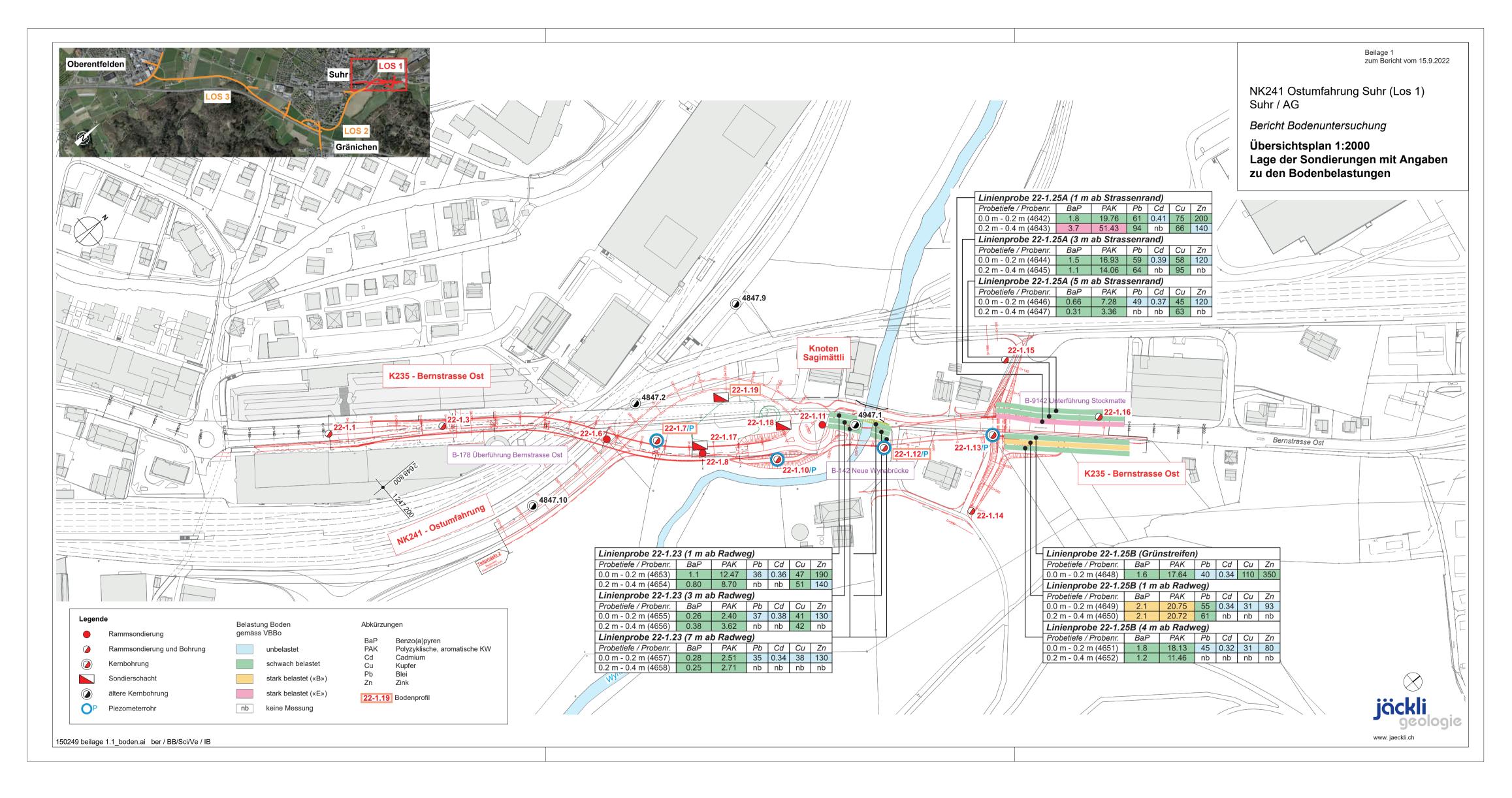
8 | 8

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 1) Suhr / AG

Bericht Bodenuntersuchung

Beilagen


Beilage 1: Übersichtsplan 1:2'000, Lage der Sondierungen mit Angaben zu den

Bodenbelastungen

Beilage 2: Boden-Profilblätter

Beilage 3: Fotodokumentation Bodenprofile

Beilage 4: Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

Beilage 2 zum Bericht vom 15.9.2022

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 1) Suhr / AG

Bericht Bodenuntersuchung

Boden-Profilblätter

150249 B2 Profile Deckblatt Los 1.docx | IB

Situation Topographie / Geologie Titeldaten Daten-schlüssel Projekt-Nr. Profil-Profil-Pedologe Datum art bezeichnung KB Polit.Gem. Gem. 10 Kanton Nr. Ort Flurname Blatt-Nr. 1:25'000 Koordinaten Kartierungs-15 code Bemerkungen Bodenbezeichnung Kalkbranerde (uncelacest Bodentyp 1353 umsmese 2nthropager PM PNG Untertyp 18 Schwach shelothalty Der Skelettgehalt 19 20 Lehm Feinerdekörnung durchwascher 2 Wasserhaushaltsgruppe / tefgindia Pflanzennutzbare Gründigkeit 137cm Agroscope FAL Reckenholz, Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, CH-8046 Zürich, © 2005 eber Neigung 0% Geländeform 26 **Profilskizze** 27 28 29/30 31/32 33/34 35/36 37/38 39/40 41 (43) 42 44/45 46/47 48 - 55 56 Horizont Steine (>5cm) Vol. % Kalk CaCO₃ pH CaCl₂ Farbe (Munsell) organ Sub. Ton Schluff Kies Sand Profilskizze Gefüge Proben (0.2-5) Vol. % Bemerkun-Tiefe Bezeichnung Nr. % gen 3 32 5 26 20 30 35 40 50 60 70 80 90 0 100 120 140 150 0 160 8 28 3.0 Profiltiefe 180 57 200 Standort Bewertung / Eignung Klima-eignungszone Höhe ü. M. m Vegetation aktuell Landsch. element Nutzungs-gebiet Boden-punktzahl Eignungs-klasse Exposition Ausgangs-material Stufe Eignung 64 65 73 76 395 AL/SC EE Nutzungsbeschränkungen / Meliorationen Krumenzustand Limitierungen Nutzungsbeschränkung Meliorationen Düngereinsatz festgestellte empfohlene fest flüssig 66 67 68 71 72 A Wald Alter, J Baumhöhe, m Prod.-fähigkeit Stufe | Punkte Humus-Bestand Vorrat, m3/ha Gesell-schaft Geeignete Baumarten gesch. gesch gesch. gem. gem. gem. 100 101 102 103 104 105 106 107 108 109 110 111

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe Datum schlüssel Nr. art bezeichnung 202 Polit.Gem. Gem. 10 Kanton Nr. Ort Flurname Blatt-Nr. 1:25'000 515 920 Koordinaten Kartierungscode Bemerkungen Bodenbezeichnung Kalkbraunerde 135 3 Bodentyp 17 Untertyp Rieshaltis Skelettgehalt 30,0.88= 19 Feinerdekörnung 100.0.79 = durchhaschan Wasserhaushaltsgruppe / 2 tiofgunde Pflanzennutzbare Gründigkeit OScm Agroscope FAL Reckenholz, Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, CH-8046 Zürich, © 2005 O % Geländeform 2 Neigung 25 26 **Profilskizze** 28 29/30 31/32 33/34 35/36 37/38 39/40 41 (43) 42 44/45 46/47 48 - 55 56 Horizont Kalk CaCO₃ pH CaCl₂ organ Sub. % Ton Steine Schluff Sand Kies Farbe Profilskizze Gefüge Proben (0.2-5) Vol. % (>5cm) Vol. % (Munsell) Bemerkun-Tiefe Bezeichnung % % % gen 0 28 37 5 dbr 35 ++ 10 20 30 30 40 1+ 50 60 ban 70 80 90 100 120 130 140 160 Profiltiefe 180 57 200 Bewertung / Eignung Klima-eignungszone Vegetation aktuell Ausgangs-material Landsch element Nutzungs-gebiet Boden-punktzahl Höhe ü. M. m Exposition Stufe Eignungs-klasse **Eignung** 73 61 62/63 64 65 75 408 0 KW FE 10 0 Nutzungsbeschränkungen / Meliorationen Limitierungen Nutzungsbeschränkung Krumenzustand Meliorationen Düngereinsatz festgestellte empfohlene fest flüssig 66 67 68 71 Wald Vorrat, m³/ha gem. | gesch. Baumhöhe, m Alter, Prod.-fähigkeit Stufe | Punkte Humus-form Bestand Gesell-schaft Geeignete Baumarten gesch. gem. gem. gesch. 100 101 102 103 104 105 106 107 108 109 110 111

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe **Datum** schlüssel Nr. art bezeichnung B 202 Gem. Polit.Gem. 10 Kanton Nr. Ort 11 Flurname Blatt-Nr. Koordinaten 1247 1:25'000 Kartierungscode Bemerkungen Bodenbezelchnung Felkbramerde 353 Bodentyp Wanstnies Clear direct notes Untertyp PNG Skelettgehalt ver wighalt 2 19 5 lehn Feinerdekörnung 25.0.88 = 22 45-0.85.0.7 = 28 30-0.88-0.8 = 21 Wasserhaushaltsgruppe / 2 7/cm Pflanzennutzbare Gründigkeit obe Neigung Geländeform 2 25 0 % **Profilskizze** 41 (43) 42 27 28 29/30 31/32 33/34 35/36 37/38 39/40 44/45 46/47 48 - 55 56 Horizont organ Sub. % Proben Bemerkun-Ton Steine **Profilskizze** Gefüge Schluff Sand Kies Kalk рΗ Farbe CaCO₃ (0.2-5) Vol. % (>5cm) Vol. % CaCl2 (Munsell) Tiefe Bezeichnung % % % gen 0 35 ds ++ 6 10 20 30 3 49 + 6 70 49 80 + 90 100 100 120 140 160 Profiltiefe 180 Standort Bewertung / Elgnung Klima-eignungszone Vegetation aktuell Boden-punktzahl Nutzungs-gebiet Höhe ü. M. Ausgangs-material Exposition Landsch. Stufe Eignung Eignungs-klasse m element 59 39 73 60 61 KW A3 ALISC BE Nutzungsbeschränkungen / Mellorationen Nutzungsbeschränkung Krumenzustand Limitierungen Meliorationen Düngereinsatz festgestellte empfohlene fest flüssig 66 67 68 72 70 Wald Prod.-fähigkeit Stufe | Punkte Humus-form Vorrat, m3/ha Alter, J Gesell-schaft Bestand Baumhöhe, m Geeignete Baumarten gesch. gesch gem. gesch. gem. gem. 100 101 102 103 104 105 106 107 108 109 110 111

Agroscope FAL Reckenholz, Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, CH-8046 Zürich, © 2005

Beilage 3 zum Bericht vom 15.9.2022

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 1) Suhr / AG

Fotodokumentation Bodenprofile

150249 B3 Fotodoku Los 1.docx

Foto 1: Profile Kernbohrungen 22-1.7 (links, Bohrung 7.7.2022, bodenkundliche Aufnahme 8.7.2022) und Kernbohrung 22-1.12 (rechts, Bohrung 15.6.2022, bodenkundliche Aufnahme 8.7.2022)

Foto 2: Profil Baggerschacht 22-1.19 (Ausführung 6.7.2022, bodenkundliche Aufnahme 7.7.2022)

Beilage 4 zum Bericht vom 15.9.2022

VERAS - V	erkehrsin	frastruktur-	Entwicklun	a Raum	Suhr
-----------	-----------	--------------	------------	--------	------

NK241 Ostumfahrung Suhr (Los 1) Suhr / AG

Bericht Bodenuntersuchung

Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

150249 B4 Labor Deckblatt Los 1.docx | IB

ANALYSENBERICHT NR. Z2291VERAS - L07 / 22

Boden-Untersuchung nach VBBo (Oberboden- und Unterboden-Untersuchung)

Auftraggeber, Ort: Kanton Aargau, Departement Bau, Verkehr und Umwelt

Projekt: NK 241, Ostumfahrung (Los 1+2)

Probeentnahme durch: Jäckli Geologie AG
Eingang der Probe(n): 12.08.2022

Probennummer:	Probenbezeichnung Kunde:	Probenahme vom:
4642	22-1.25A (1m) 0.0-0.2	10.08.2022
4643	22-1.25A (1m) 0.2-0.4	10.08.2022
4644	22-1.25A (3m) 0.0-0.2	10.08.2022
4645	22-1.25A (3m) 0.2-0.4	10.08.2022
4646	22-1.25A (5m) 0.0-0.2	10.08.2022
4647	22-1.25A (5m) 0.2-0.4	10.08.2022
4648	22-1.25B (Grünstr.) 0.0-0.2	10.08.2022
4649	22-1.25B (1m) 0.0-0.2	10.08.2022
4650	22-1.25B (1m) 0.2-0.4	10.08.2022
4651	22-1.25B (4m) 0.0-0.2	10.08.2022
4652	22-1.25B (4m) 0.2-0.4	10.08.2022
4653	22-1.23 (1m) 0.0-0.2	10.08.2022
4654	22-1.23 (1m) 0.2-0.4	10.08.2022
4655	22-1.23 (4m) 0.0-0.2	10.08.2022
4656	22-1.23 (4m) 0.2-0.4	10.08.2022
4657	22-1.23 (7m) 0.0-0.2	10.08.2022
4658	22-1.23 (7m) 0.2-0.4	10.08.2022
4659	22-2.10 (1m) 0.0-0.2	12.08.2022
4660	22-2.10 (1m) 0.2-0.4 Los 2	12.08.2022
4661	22-2-1 0 (4m) 0.0-0.2	12.08.2022
4662	22-2.10 (4m) 0.2-0.4	12.08. 2022

Analysenresultate siehe folgende Seiten

ENVILAB AG
Mühlethalstrasse 25, 4800 Zofingen
+41 [0]62 745 70 50, info@envilab.ch
www.envilab.ch
Akkreditiert ISO 17025

Analysenresultate

Parameter		Probent	nummer		Best	Einheit	Methode/
	4642	4643	4644	4645	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	extern
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	61	94	59	64	2	mg Pb/kg TS	ICP-OES
Cadmium	0.41	nb	0.39	nb	0.05	mg Cd/kg TS	ICP-OES
Kupfer	75	66	58	95	0.1	mg Cu/kg TS	ICP-OES
Zink	200	140	120	nb	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (Fr	aktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	0.86	1.8	0.78	0.52	0.05	mg/kg TS	GC-MS
Acenaphthen	0.07	0.14	0.06	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	0.08	0.19	0.07	0.06	0.05	mg/kg TS	GC-MS
Phenanthren	0.90	2.7	0.67	0.57	0.05	mg/kg TS	GC-MS
Anthracen	0.89	1.9	0.77	0.49	0.05	mg/kg TS	GC-MS
Fluoranthen	3.0	8.7	2.5	2.1	0.05	mg/kg TS	GC-MS
Pyren	2.3	6.6	2.0	1.8	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	1.0	4.5	1.3	1.2	0.05	mg/kg TS	GC-MS
Chrysen	2.0	5.1	1.7	1.3	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	2.5	7.0	2.1	2.2	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	1.2	2.8	0.96	0.70	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	1.8	3.7	1.5	1.1	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	1.5	3.3	1.2	1.0	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	0.26	0.60	0.22	0.18	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	1.4	2.4	1.1	0.84	0.05	mg/kg TS	GC-MS
Gesamt PAK	19.76	51.43	16.93	14.06	-	mg/kg TS	GC-MS

Parameter		Probent	nummer		Best	Einheit	Methode/
	4646	4647	4648	4649	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	extern
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	49	nb	40	55	2	mg Pb/kg TS	ICP-OES
Cadmium	0.37	nb	0.34	0.34	0.05	mg Cd/kg TS	ICP-OES
Kupfer	45	63	110	31	0.1	mg Cu/kg TS	ICP-OES
Zink	120	nb	350	93	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (Fr	aktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	0.35	0.13	0.85	0.88	0.05	mg/kg TS	GC-MS
Acenaphthen	<0.05	<0.05	0.05	0.07	0.05	mg/kg TS	GC-MS
Fluoren	<0.05	<0.05	0.07	0.07	0.05	mg/kg TS	GC-MS
Phenanthren	0.25	0.12	0.44	0.61	0.05	mg/kg TS	GC-MS
Anthracen	0.31	0.11	0.84	0.89	0.05	mg/kg TS	GC-MS
Fluoranthen	0.98	0.45	2.1	2.7	0.05	mg/kg TS	GC-MS
Pyren	0.91	0.42	1.7	2.1	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	0.53	0.26	1.3	1.6	0.05	mg/kg TS	GC-MS
Chrysen	0.73	0.31	1.6	2.0	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	0.96	0.50	2.4	2.9	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	0.40	0.17	1.2	1.3	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	0.66	0.31	1.6	2.1	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	0.58	0.29	1.6	1.7	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	0.11	0.06	0.29	0.33	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	0.51	0.23	1.6	1.5	0.05	mg/kg TS	GC-MS
Gesamt PAK	7.28	3.36	17.64	20.75	-	mg/kg TS	GC-MS

Parameter		Probent	nummer		Best	Einheit	Methode/
	4650	4651	4652	4653	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	extern
Schwermetalle n. VBBc	(Fraktion <2mm)						
Blei	61	45	nb	36	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.32	nb	0.36	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	31	nb	47	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	80	nb	190	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (Fr	aktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	0.69	0.79	0.40	0.32	0.05	mg/kg TS	GC-MS
Acenaphthen	0.06	0.06	<0.05	0.06	0.05	mg/kg TS	GC-MS
Fluoren	0.07	0.06	<0.05	0.08	0.05	mg/kg TS	GC-MS
Phenanthren	0.67	0.50	0.33	0.60	0.05	mg/kg TS	GC-MS
Anthracen	0.66	0.74	0.37	0.49	0.05	mg/kg TS	GC-MS
Fluoranthen	2.9	2.4	1.5	1.8	0.05	mg/kg TS	GC-MS
Pyren	2.3	2.0	1.3	1.5	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	1.7	1.5	0.91	1.1	0.05	mg/kg TS	GC-MS
Chrysen	1.9	1.8	1.0	1.3	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	3.2	2.5	1.8	1.6	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	1.0	1.1	0.61	0.66	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	2.1	1.8	1.2	1.1	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	1.8	1.4	1.1	0.89	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	0.37	0.28	0.19	0.19	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	1.3	1.2	0.75	0.78	0.05	mg/kg TS	GC-MS
Gesamt PAK	20.72	18.13	11.46	12.47	-	mg/kg TS	GC-MS

Parameter		Probent	ummer		Best	Einheit	Methode/
	4654	4655	4656	4657	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	exterr
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	nb	37	nb	35	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.38	nb	0.34	0.05	mg Cd/kg TS	ICP-OES
Kupfer	51	41	42	38	0.1	mg Cu/kg TS	ICP-OES
Zink	140	130	nb	130	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (Fr	aktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	0.28	0.11	0.12	0.10	0.05	mg/kg TS	GC-MS
Acenaphthen	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren	0.26	0.07	0.07	<0.05	0.05	mg/kg TS	GC-MS
Anthracen	0.29	0.11	0.12	0.10	0.05	mg/kg TS	GC-MS
Fluoranthen	1.0	0.26	0.31	0.24	0.05	mg/kg TS	GC-MS
Pyren	0.95	0.25	0.32	0.26	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	0.63	0.16	0.24	0.17	0.05	mg/kg TS	GC-MS
Chrysen	0.88	0.23	0.30	0.26	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	1.5	0.33	0.62	0.39	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	0.41	0.15	0.18	0.17	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	0.80	0.26	0.38	0.28	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	0.84	0.25	0.46	0.25	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	0.17	<0.05	0.09	0.05	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	0.69	0.22	0.41	0.24	0.05	mg/kg TS	GC-MS
Gesamt PAK	8.70	2.40	3.62	2.51	-	mg/kg TS	GC-MS

Parameter		Probent	nummer		Best	Einheit	Methode/
-	4658	4659	4660	4681	grenze		Verfahren
TOC400	nb	nb	nb	nt	0.1	%TS	extern
Schwermetalle n. VBBo	(Fraktion <2mm)		Los 2	/			
Blei	nb	44	nb	20	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.23	nb	0.13	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	87	81	22	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	79	nb	49	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatise	che Kohlenwassersto	ffe (PAK) n. VBBo (Fr	aktion <2mm)	/			
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	0.09	<0.05	<0/05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthen	<0.05	<0.05	€0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren	0.06	0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Anthracen	0.08	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoranthen	0.26	0.21	0.18	<0.05	0.05	mg/kg TS	GC-MS
Pyren	0.28	0.21	0 20	<0.05	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	0.19	0.13	0.13	<0.05	0.05	mg/kg TS	GC-MS
Chrysen	0.24	0.1/8	0.18	<0.05	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	0.46	0.25	0.29	<0.05	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	0.14	0.10	0.10	<0.05	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	0.25	0.18	0.17	<0.05	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	0.31	0.15	0.16	<0.05	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	0.06	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	0.29	0.15	0.15	₹0.05	0.05	mg/kg TS	GC-MS
Gesamt PAK	2.71	1.61	1.56	\\.	-	mg/kg TS	GC-MS

Parameter					Probennummer	Best	Einheit	Methode/
	4662			662		grenze		Verfahren
TOC400		Los	2	nþ		0.1	%TS	exteri
Schwermetalle n. VBB	o (Fra			T				
Blei	\Box			nb		2	mg Pb/kg TS	ICP-OES
Cadmium				nb		0.05	mg Cd/kg TS	ICP-OES
Kupfer			\neg	nb		0.1	mg Cu/kg TS	ICP-OES
Zink		1	\neg	nb		0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromati	sche l	Kohlen	wasse	rsto	ffe (PAK) n. VBBo (Fraktion <2mm)			
Naphthalin		1	T	nb		0.05	mg/kg TS	GC-MS
Acenaphthylen			T	nb		0.05	mg/kg TS	GC-MS
Acenaphthen				nb		0.05	mg/kg TS	GC-MS
Fluoren		\ \		nb		0.05	mg/kg TS	GC-MS
Phenanthren		,		nb		0.05	mg/kg TS	GC-MS
Anthracen				nb		0.05	mg/kg TS	GC-MS
Fluoranthen		\neg		nb		0.05	mg/kg TS	GC-MS
Pyren		\top		nb		0.05	mg/kg TS	GC-MS
Benz(a)anthracen		T	1	nb		0.05	mg/kg TS	GC-MS
Chrysen		1		nb		0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen				nb		0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen				nb		0.05	mg/kg TS	GC-MS
Benzo(a)pyren	П			nb		0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	П			ηb		0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	I			nb		0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen				nb		0.05	mg/kg TS	GC-MS
Gesamt PAK				nb		-	mg/kg TS	GC-MS

Bei der Berechnung des Gesamt PAK-Wertes werden die Einzelwerte, welche unter der Bestimmungsgrenze liegen, nicht berücksichtigt.

geprüft: Stephan Künzler Zofingen, 26. August 2022

Sachbearbeitung: Marco Nägelin / Christian Steiner

Die Prüfergebnisse beziehen sich ausschliesslich auf die Prüfgegenstände. Ohne schriftliche Genehmigung der ENVILAB AG darf der Bericht nicht auszugsweise vervielfältigt werden.

Detailinformationen zum Messverfahren sowie zu Messunsicherheiten und Prüfdaten sind auf Anfrage erhältlich.

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 2) Suhr / AG

Bericht Bodenuntersuchung

Zürich, 15. September 2022

Bauherrschaft: Kanton Aargau, Departement Bau, Verkehr und Umwelt, Abteilung Tiefbau,

Entfelderstrasse 22, 5001 Aarau

Bauingenieur: IG PRELO, % FPREISIG AG, Bauingenieure und Planer SIA USIC, Bahnhofstr. 94,

5000 Aarau

Objektnummer: 150249

INHALT

1	EINLEITUNG	3
1.1 1.2 1.3	Projektperimeter	3
2 2.1 2.2	DURCHGEFÜHRTE UNTERSUCHUNGEN Profilaufnahmen Untersuchung chemische Belastung	4 4 4
3 3.1 3.2	3	5 5 6
4	WEITERES VORGEHEN	7
4.1 4.2	5 5 7	7 7
TAE	BELLEN	
Tab	elle 2: Angetroffene Bodeneigenschaften gemäss [6] und [7]	5
Tab	elle 1: Angetroffener Boden	6

BEILAGEN

- Beilage 1: Übersichtsplan 1:2'000, Lage der Sondierungen mit Angaben zu den Bodenbelastungen
- Beilage 2: Boden-Profilblatt
- Beilage 3: Fotodokumentation Bodenprofil
- Beilage 4: Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

1 EINLEITUNG

1.1 Ausgangslage und Auftrag

Die Abteilung Tiefbau des Departements Bau, Verkehr und Umwelt (DBVU) des Kantons Aargau plant für die Verkehrsinfrastruktur-Entwicklung Raum Suhr (VERAS) die Realisierung der Südumfahrung Suhr (NK240) und der Ostumfahrung Suhr (NK241).

Für das Bauprojekt waren ergänzende Bodenuntersuchungen durchzuführen und in einem schriftlichen Bericht zu dokumentieren. Den entsprechenden Auftrag erteilte die Abteilung Tiefbau des DBVU mit Vertrag vom 24.2.2022.

1.2 Projektperimeter

Der Projektperimeter liegt am südöstlichen Siedlungsrand von Suhr / AG auf ca. 400 m ü.M. Er ist in *Beilage 1* eingezeichnet.

Für die Gemeinde Suhr liegt keine kantonale Bodenkarte vor. Gemäss früheren Bohrstockaufnahmen [1] sind im Projektperimeter tiefgründige Braunerden vorhanden.

1.3 Grundlagen

Frühere Berichte

In der Umgebung des Projektareals sind in der Vergangenheit bereits verschiedene geologische und bodenfachkundige Abklärungen erfolgt. Die Erkenntnisse sind in den folgenden beiden Berichten dokumentiert:

- [1] Gruner AG (29.3.2019): Umweltverträglichkeitsbericht Voruntersuchung, Trassee Ostumfahrung Suhr, Suhr / Gränichen IO / AO NK241.
- [2] Jäckli Geologie AG (31.8.2022): NK241 Ostumfahrung Suhr (Los 1), Suhr / AG, Geologisch-geotechnischer Bericht.

Bodenschutz

Fruchtbarer Boden ist ein in Jahrtausenden entstandenes, wertvolles Gut, das kurzfristig weder ersetzt noch erneuert werden kann. Gemäss der Verordnung über Belastungen des Bodens (VBBo) darf Boden durch Bauarbeiten nicht geschädigt werden und die Bodenfruchtbarkeit muss erhalten bleiben. Im Weiteren dürfen chemische Bodenbelastungen nicht verschleppt werden und belastete Böden sind fachgerecht zu entsorgen resp. zu verwerten.

Nachfolgend sind relevante gesetzliche und bodenfachkundige Grundlagen sowie kantonale Merkblätter aufgelistet.

- [3] Umweltschutzgesetz (USG), SR 814.01 vom 7. Oktober 1983.
- [4] Verordnung über Belastungen des Bodens (VBBo), SR 814.12 vom 1. Juli 1998.
- [5] Verordnung über die Vermeidung und die Entsorgung von Abfällen (Abfallverordnung, VVEA), SR 814.600 vom 4. Dezember 2015.
- [6] Eidgenössische Forschungsanstalt für Agrarökologie und Landbau (FAL) Zürich-Reckenholz (1997): Kartieren und Beurteilen von Landwirtschaftsböden. Publikation 24.

- [7] Bodenkundliche Gesellschaft der Schweiz BGS (2010): Klassifikation der Böden der Schweiz.
- [8] Schweizerischer Verband der Strasse- und Verkehrsfachleute VSS (31.12.2017): Erdbau, Boden; Bodenschutz und Bauen. SN 640 581.
- [9] Bundesamt für Umwelt BAFU (2020): Bauabfälle. Ein Modul der Vollzugshilfe zur Abfallverordnung, VVEA.
- [10] Bundesamt für Umwelt BAFU (2021): Beurteilung von Boden im Hinblick auf seine Verwertung. Verwertungseignung von Boden. Ein Modul der Vollzugshilfe «Bodenschutz beim Bauen».
- [11] Fachverband der Schweizerischen Kies- und Betonindustrie FSKB (2021): FSKB-Rekultivierungsrichtlinie. Richtlinie für den sachgerechten Umgang mit Boden.
- [12] Bundesamt für Umwelt BAFU (2022): Sachgerechter Umgang mit Boden beim Bauen. Bodenschutzmassnahmen auf Baustellen. Ein Modul der Vollzugshilfe «Bodenschutz beim Bauen».

2 DURCHGEFÜHRTE UNTERSUCHUNGEN

2.1 Profilaufnahmen

Zur Untersuchung des im Projektperimeter vorhandenen Bodens wurde am 21.7.2022 ein Bodenprofil bodenkundlich aufgenommen und gemäss [6] und [7] beurteilt (Lage vgl. Beilage 1):

22-2.11 Baggerschacht

2.2 Untersuchung chemische Belastung

Entlang der stark befahrenen Gränicherstrasse besteht gemäss dem kantonalen Prüfperimeter Bodenaushub (PPBA) ein Verdacht auf chemische Belastungen.

Für die Untersuchung des Bodens wurden am 10.8.2022 parallel zur Nordostseite der Gränicherstrasse nach Verordnung über Belastungen des Bodens (VBBo) in jeweils zwei unterschiedlichen Abständen zur Strasse Linienproben entnommen (Lage vgl. *Beilage 1*).

22-2.10 1 m und 4 m ab Schotterbett

Auf beiden Linien wurden aus insgesamt 16 Einstichen aus 0.0–0.2 m und 0.2–0.4 m je zwei tiefenabhängige Mischproben erstellt. Die Mischproben wurden bodenkundlich beschrieben und im Labor nach VBBo auf Blei, Cadmium, Kupfer, Zink und Polyzyklische Aromatische Kohlenwasserstoffe (PAK) chemische analysiert.

Innerhalb eines Streifens von 0–1 m vom Strassenrand liegt erfahrungsgemäss ohnehin eine starke Belastung mit PAK und Blei vor. Dieser «Opferstreifen» wurde daher nicht untersucht.

3 ERGEBNISSE

3.1 Bodeneigenschaften

Im Profilblatt in *Beilage 2* ist der Bodenaufbau der Sondierung detailliert beschrieben. In *Beilage 3* ist das Bodenprofil fotografisch dokumentiert. Die Befunde der bodenkundlichen Aufnahme sind in *Tabelle 1* zusammengefasst.

Tabelle 1: Angetroffene Bodeneigenschaften gemäss [6] und [7]

Sondierung	22-2.11			
Profilart	Baggerschacht			
Allgemeine Angaben				
Bodentyp	Braunerde			
Untertypen	neutral, schwach pseudogleyig			
Ausgangsmaterial	Alluvionen / Schotter			
Oberboden (A-Horizont)				
Mächtigkeit (cm)	30			
Feinerdekörnung 1)	lehmreicher Sand			
Skelettgehalt (Vol%) 2)	7			
Unterboden (B-Horizont) 3)				
B-Horizont (cm)	70			
Feinerdekörnung 1)	lehmreicher Sand			
Skelettgehalt (Vol%) 2)	6			
Weitere Merkmale				
Verdichtungs- empfindlichkeit ⁴⁾	schwach empfindlich			
PNG ⁵⁾	83			
Wasserhaushaltsgruppe	a			
Nutzungseignungsklasse ⁶⁾	2A			
Fruchtfolgefläche gem. [6]	ja			

- 1) Feinerde: umfasst Ton (0.002–0.05 cm), Schluff (0.05–2 mm) und Sand (2–50 mm)
- 2) Skelett: umfasst Kies (0.2–5 cm) und Steine (>5 cm)
- 3) teils zusammengesetzt aus Bcn und Bg
- 4) Beurteilung nach [8]
- 5) PNG: Pflanzennutzbare Gründigkeit, Herleitung nach [6], gerundet auf ganze Zahl
- 6) Limitierender Faktor (I Stauwasser / A Bodenart)

Das Profil zeigt eine tiefgründige Braunerde, welche über Alluvionen (Schwemmsedimenten) und Schotter entstanden ist. Der Boden weist Nutzungsklasse (NEK) 2 auf und gilt damit als Fruchtfolgeflächen (FFF) 1. Güteklasse.

Der Boden ist nicht eingestaut. Gemäss [2] ist der Grundwasserspiegel selbst bei Hochwasser höchstens bei ca. 6 m u.T. zu erwarten.

3.2 Chemische Belastungen

Ergebnisse

Die für die chemischen Analysen entnommenen Mischproben sind in der *Tabelle 2* beschrieben, die Resultate sind in Laborbericht in *Beilage 4* und in *Beilage 1* grafisch dargestellt.

Der Boden auf der Linie 1 m ab Schotterbett weist in beiden beprobten Tiefenlagen Richtwertüberschreitungen nach VBBo für PAK und Kupfer auf. Es ist eine leichte Abnahme mit der Tiefe feststellbar. Auf der Linie 4 m ab Schotterbett wurden keine Richtwertüberschreitungen nachgewiesen.

Wenn keine Richtwertüberschreitungen vorliegen, gilt der Boden gemäss VBBo als *unbelastet*. Boden mit Richtwertüberschreitungen gilt als *schwach belastet*.

Tabelle 2: Angetroffener Boden

Sondierung	Tiefe (ca. m u.T.)	Farbe	Beschrieb Feinerde	Skelett (ca. Gew%)	Fremdstoffe (ca. Gew%)
22-2.10 (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	5–10	-
22-2.10 (4 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	-
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	_

Ausdehnung der Belastung

Gemäss den Untersuchungsresultaten beschränkt sich die horizontale Ausdehnung der chemischen Belastung des Bodens entlang der Nordseite der Gränicherstrasse auf einen ca. 3 m breiten Streifen ab Schotterbett.

Innerhalb dieses Streifens ist die Untergrenze der Belastung im Abstand bis 2 m ab Schotterbett in ca. 0.6 m Tiefe zu erwarten. Sie dürfte dann bis zum Abstand von 3 m ab Schotterbett auf ca. 0.2 m Tiefe ansteigen.

4 WEITERES VORGEHEN

Bodenkundliche Baubegleitung (BBB) 4.1

Im Hinblick auf die Bauausführung ist die Ausarbeitung eines Bodenschutzkonzepts erforderlich und der Bodenschutz muss während der Ausführung durch eine Bodenkundliche Baubegleitung (BBB) gewährleistet werden (voraussehbare Auflagen).

Die Baueingriffe sind so durchzuführen, dass die vorhandenen Böden in ihrer Funktion bzw. Fruchtbarkeit langfristig nicht beeinträchtigt werden.

Der Inhalt des Bodenschutzkonzepts umfasst u.a. Folgendes:

- Festlegung von projektspezifischen Bodenschutzmassnahmen.
- Detaillierte Materialbilanz für den von Umlagerungen betroffenen Boden.
- Angaben zum Verlust von FFF.
- Pflichtenheft für die Bodenkundliche Baubegleitung (BBB).

Die im vorliegenden Bericht dokumentierten Untersuchungsresultate bilden die Grundlage für das Ausarbeiten des Bodenschutzkonzepts.

4.2 Hinweis zur Ausführbarkeit von Erdarbeiten

Zur Gewährleistung des physikalischen Bodenschutzes dürfen Erdarbeiten grundsätzlich nur bei genügend abgetrockneten Böden ausgeführt werden. Solche Bedingungen werden in der Regel nur während der Vegetationsperiode erreicht (ca. April bis Oktober). Es muss im Terminprogramm genügend Spielraum für witterungsbedingte Unterbrüche einberechnet werden. Die entsprechenden Vorgaben werden im Bodenschutzkonzept festgelegt.

Zürich, 15. September 2022

150249 Bericht_Boden Los 2.docx IB/Ke

Jäckli Geologie AG

Projektbearbeitung:

Isabel Baur, Dr. sc. nat. ETH, Umwelt-Natw., BBB BGS¹

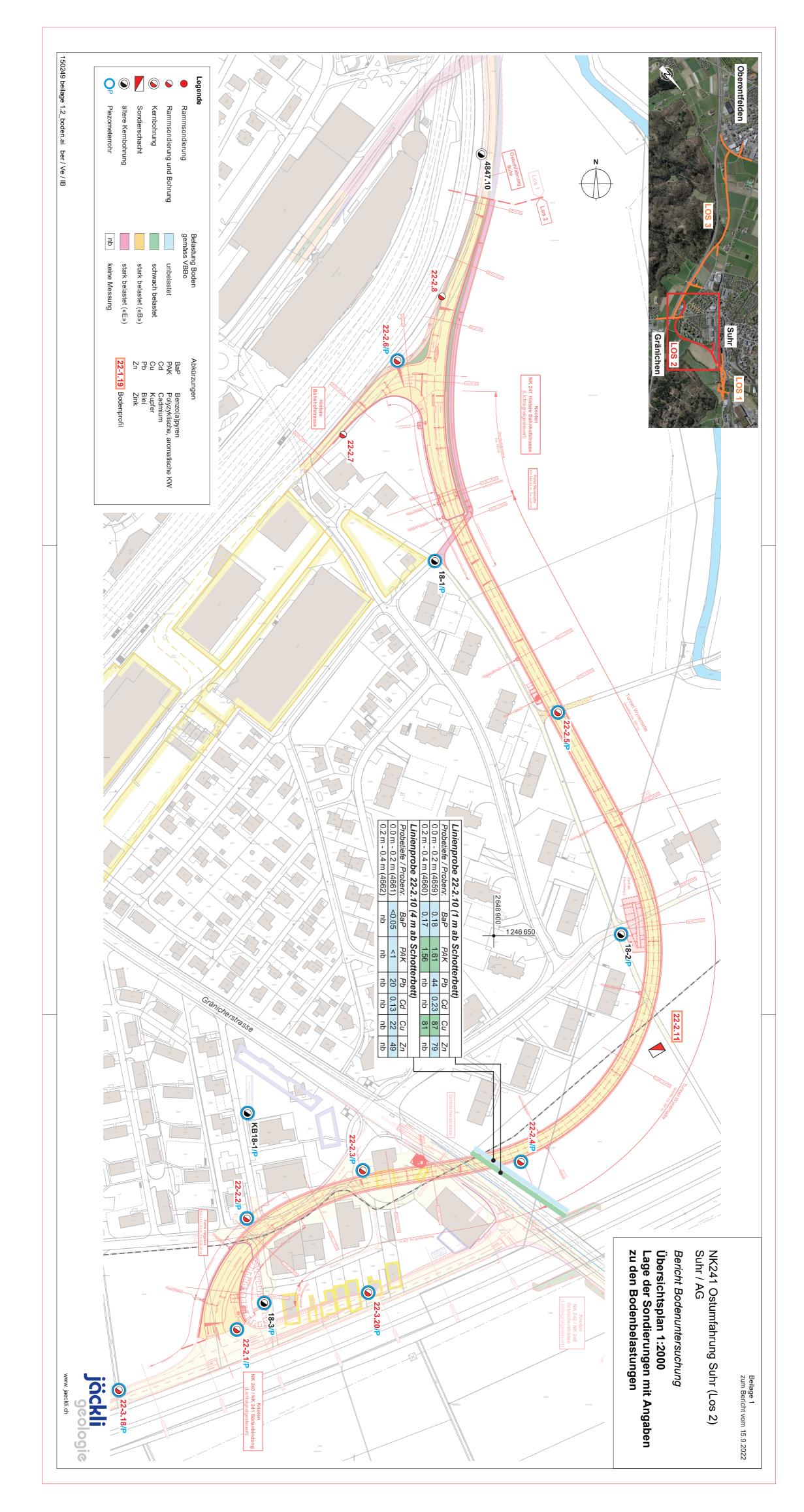
¹ BBB BGS: BBB anerkannt durch die Bodenkundliche Gesellschaft der Schweiz

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 2) Suhr / AG

Bericht Bodenuntersuchung

Beilagen


Beilage 1: Übersichtsplan 1:2'000, Lage der Sondierungen mit Angaben zu den

Bodenbelastungen

Beilage 2: Boden-Profilblatt

Beilage 3: Fotodokumentation Bodenprofil

Beilage 4: Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

Beilage 2 zum Bericht vom 15.9.2022

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 2) Suhr / AG

Bericht Bodenuntersuchung

Boden-Profilblatt

Situation Topographie / Geologie Titeldaten Projekt-Nr. Daten-Profil-Profil-Pedologe Datum bezeichnung art 202 11/ Polit.Gem. Gem 10 Kanton Ort Flurname Blatt-Nr. 1:25'000 03 Koordinaten Kartierungs-15 code Bemerkungen Bodenbezelchnung Brownerde **Bodentyp** 16 B 1357 true Notes neutral , schwach pseudogleying Untertyp Skelettgehalt 30.0,93 50.0.94.09 = 42,3 Lehmreicher Sand Feinerdekörnung 20.0.83.0.8= 13.3 Genkrecht durchweschen Wasserhaushaltsgruppe / 23cm Pflanzennutzbare Gründigkeit 260 2 Neigung 25 0 % Geländeform **Profilskizze** 28 29/30 33/34 37/38 41 (43) 42 44/45 31/32 35/36 39/40 46/47 Horizont pH CaCl₂ Kalk CaCO **Profilskizze** organ Ton Schluff Sand Kies Steine Proben Bemerkun-Gefüge Farbe (0.2-5) Vol. % (>5cm) Vol. % Sub. (Munsell) Nr. Tiefe Bezeichnung % % % % gen 015 14 (+) 20 30 30 50 60 80 90 100 160 Profiltiefe 180 57 120 Standort Bewertung / Elgnung Klima-eignungszone aktuell Boden-punktzahl Ausgangs-material Nutzungs-gebiet Höhe ü. M. Exposition Klima-Landsch. Stufe Eignungs-klasse **Eignung** 73 65 74 75 58 59 60 62/63 76 0 AK A3 AL/SC EE 400 Nutzungsbeschränkungen / Meliorationen Limitierungen Krumenzustand Nutzungsbeschränkung Meliorationen Düngereinsatz empfohlene festgestellte flüssig fest 66 67 68 69 70 Wald Gesell-schaft Prod.-fähigkeit Stufe | Punkte Humus-form **Bestand** Baumhöhe, m Vorrat, m3/ha Alter, J Geeignete Baumarten gesch gem. |gesch gesch. gem. gem. 100 101 104 107 102 103 105 106 108 109 110 111

Beilage 3 zum Bericht vom 15.9.2022

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK241 Ostumfahrung Suhr (Los 2) Suhr / AG

Fotodokumentation Bodenprofil

150249 B3 Fotodoku Los 2.docx Ve

08 09 10

Foto 1: Profil Baggerschacht 22-2.11 (Ausführung und bodenkundliche Aufnahme 21.7.2022)

Beilage 4 zum Bericht vom 15.9.2022

VERAS - Ve	rkehrsin	frastruktur-	-Entwick	luna R	laum 🤉	Suhr
------------	----------	--------------	----------	--------	--------	------

NK241 Ostumfahrung Suhr (Los 2) Suhr / AG

Bericht Bodenuntersuchung

Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

150249 B4 Labor Deckblatt Los 2.docx | IB

ANALYSENBERICHT NR. Z2291VERAS - L07 / 22

Boden-Untersuchung nach VBBo (Oberboden- und Unterboden-Untersuchung)

Auftraggeber, Ort: Kanton Aargau, Departement Bau, Verkehr und Umwelt

Projekt: NK 241, Ostumfahrung (Los 1+2)

Probeentnahme durch: Jäckli Geologie AG
Eingang der Probe(n): 12.08.2022

Probennummer:	Probenbezeichnung Kunde:	Probenahme vom:
4 642	22-1.25A (1m) 0.0-0.2	10.08.2022
4643	22-1.25A (1m) 0.2-0.4	10.08.2022
4644	22-1.25A (3m) 0.0-0.2	10.08.2022
4645	22-1.25A (3m) 0.2-0.4	10.08.2022
4646	22-1.25A (5m) 0.0-0.2	10.08.2022
4647	22-1.25A (5m) 0.2-0.4	10.08.2022
4648	22-1.258 (Grünstr.) 0.0-0.2	10.08.2022
4649	22-1.25B (1m) 0.8 0.2	10.08.2022
4650	22-1.25B (1m) 0.2-0.4	10.08.2022
4651	22-1.25B (4m) 0.0-6.2	10.08.2022
4652	22-1.25B (4m) 0.2-0.4	10.08.2022
4653	22-1.23 (1m) 0.0-0.2	10.08.2022
4654	22-1.23 (1m) 0.2-0.4	10.08.2022
4655	22-1.23 (4m) 0.0-0.2	10.08.2022
4656	22-1.23 (4m) 0.2-0.4	10.08.2022
4657	22-1.23 (7m) 0.0-0.2	10.08.2022
4658	22-1.23 (7m) 0.2-0.4	10.08.2022
4659	22-2.10 (1m) 0.0-0.2	12.08.2022
4660	22-2.10 (1m) 0.2-0.4	12.08.2022
4661	22-2.10 (4m) 0.0-0.2	12.08.2022
4662	22-2.10 (4m) 0.2-0.4	12.08.2022

Analysenresultate siehe folgende Seiten

ENVILAB AG
Mühlethalstrasse 25, 4800 Zofingen
+41 (0)62 745 70 50, info@envilab.ch

Parameter	Probennummer					nummer		Best	Einheit	Methode/
	1			465	4659	4660	4661	grenze		Verfahren
TOC400	1			ηb	nb	nb	nb	0.1	%TS	extern
Schwermetalle n. VBB	o (Fra	aktion	<2n	nm)						
Blei		Lo	os í	1 nb	44	nb	20	2	mg Pb/kg TS	ICP-OES
Cadmium				nb	0.23	nb	0.13	0.05	mg Cd/kg TS	ICP-OES
Kupfer				nb	87	81	22	0.1	mg Cu/kg TS	ICP-OES
Zink				nb	79	nb	49	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	sche	Kohle	nwa	ssersto	offe (PAK) n. VBBo (Fr	aktion <2mm)				
Naphthalin		7		<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen		\neg	7	0.09	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthen			T	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoren			V	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren			X	0.06	0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Anthracen			1	0.08	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoranthen		\neg	1	0.26	0.21	0.18	<0.05	0.05	mg/kg TS	GC-MS
Pyren		\neg	1	0.28	0.21	0.20	<0.05	0.05	mg/kg TS	GC-MS
Benz(a)anthracen		T		0.19	0.13	0.13	<0.05	0.05	mg/kg TS	GC-MS
Chrysen		T		0.24	0.18	0.18	<0.05	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen		Π		0.46	0.25	0.29	<0.05	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen				0.14	0.10	0.10	<0.05	0.05	mg/kg TS	GC-MS
Benzo(a)pyren				0.25	0.18	0.17	<0.05	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren		0.31		0.31	0.15	0.16	<0.05	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen		0.06		0.06	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen				0.29	0.15	0.15	<0.05	0.05	mg/kg TS	GC-MS
Gesamt PAK				2.7	1.61	1.56	-	-	mg/kg TS	GC-MS

Bei der Berechnung des Gesamt PAK-Wertes werden die Einzelwerte, welche unter der Bestimmungsgrenze liegen, nicht berücksichtigt.

ENVILAB AG
Mühlethalstrasse 25, 4800 Zofingen
+41 (0)62 745 70 50, info@envilab.ch

Parameter		Probent	nummer	Best	Einheit	Methode/
	4662			grenze		Verfahren
TOC400	nb			0.1	%TS	exterr
Schwermetalle n. VBBc	(Fraktion <2mm)					
Blei	nb			2	mg Pb/kg TS	ICP-OES
Cadmium	nb			0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb			0.1	mg Cu/kg TS	ICP-OES
Zink	nb			0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (Fr	aktion <2mm)			
Naphthalin	nb			0.05	mg/kg TS	GC-MS
Acenaphthylen	nb			0.05	mg/kg TS	GC-MS
Acenaphthen	nb			0.05	mg/kg TS	GC-MS
Fluoren	nb			0.05	mg/kg TS	GC-MS
Phenanthren	nb			0.05	mg/kg TS	GC-MS
Anthracen	nb			0.05	mg/kg TS	GC-MS
Fluoranthen	nb			0.05	mg/kg TS	GC-MS
Pyren	nb			0.05	mg/kg TS	GC-MS
Benz(a)anthracen	nb			0.05	mg/kg TS	GC-MS
Chrysen	nb			0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	nb			0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	nb			0.05	mg/kg TS	GC-MS
Benzo(a)pyren	nb			0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	nb			0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	nb			0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	nb			0.05	mg/kg TS	GC-MS
Gesamt PAK	nb			-	mg/kg TS	GC-MS

Bei der Berechnung des Gesamt PAK-Wertes werden die Einzelwerte, welche unter der Bestimmungsgrenze liegen, nicht berücksichtigt.

geprüft: Stephan Künzler Zofingen, 26. August 2022

Sachbearbeitung: Marco Nägelin / Christian Steiner

Die Prüfergebnisse beziehen sich ausschliesslich auf die Prüfgegenstände. Ohne schriftliche Genehmigung der ENVILAB AG darf der Bericht nicht auszugsweise vervielfältigt werden.

Detailinformationen zum Messverfahren sowie zu Messunsicherheiten und Prüfdaten sind auf Anfrage erhältlich.

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK240 Südumfahrung Suhr (Los 3) Suhr / AG

Bericht Bodenuntersuchung

Zürich, 15. September 2022

Bauherrschaft: Kanton Aargau, Departement Bau, Verkehr und Umwelt, Abteilung Tiefbau,

Entfelderstrasse 22, 5001 Aarau

Bauingenieur: IG BRS_plus, % SNZ Ingenieure und Planer, Siewerdtstrasse 7, 8050 Zürich

Objektnummer: 150249

INHALT

1	EINLEITUNG	3				
1.1	Ausgangslage und Auftrag	3				
1.2	Projektperimeter	3				
1.3	Grundlagen	3				
2	DURCHGEFÜHRTE UNTERSUCHUNGEN	4				
2.1	Profilaufnahmen	4				
2.2	Untersuchung chemische Belastung	4				
3	ERGEBNISSE	5				
3.1	.1 Bodeneigenschaften					
3.2	Chemische Belastungen	7				
4	WEITERES VORGEHEN	10				
4.1	Bodenkundliche Baubegleitung (BBB)	10				
4.2	Hinweis zur Ausführbarkeit von Erdarbeiten	10				
TAB	BELLEN					
Tabe	elle 1: Angetroffene Bodeneigenschaften gemäss [6] und [7]	6				
Tabe	elle 2: Angetroffener Boden	8				

BEILAGEN

- Beilage 1: Übersichtsplan 1:2'000, Lage der Sondierungen mit Angaben zu den Bodenbelastungen
- Beilage 2: Boden-Profilblätter
- Beilage 3: Fotodokumentation Bodenprofile
- Beilage 4: Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

1 EINLEITUNG

1.1 Ausgangslage und Auftrag

Die Abteilung Tiefbau des Departements Bau, Verkehr und Umwelt (DBVU) des Kantons Aargau plant für die Verkehrsinfrastruktur-Entwicklung Raum Suhr (VERAS) die Realisierung der Südumfahrung Suhr (NK240) und der Ostumfahrung Suhr (NK241).

Für das Bauprojekt waren ergänzende Bodenuntersuchungen durchzuführen und in einem schriftlichen Bericht zu dokumentieren. Den entsprechenden Auftrag erteilte die Abteilung Tiefbau des DBVU mit Vertrag vom 24.2.2022.

1.2 Projektperimeter

Der Projektperimeter liegt am südlichen Siedlungsrand von Suhr / AG auf ca. 410 m ü.M. Er ist in *Beilage 1* eingezeichnet.

Für die Gemeinde Suhr liegt keine kantonale Bodenkarte vor. Gemäss früheren Bohrstockaufnahmen [1] sind im Projektperimeter tiefgründige Braunerden vorhanden.

1.3 Grundlagen

Frühere Berichte

In der Umgebung des Projektareals sind in der Vergangenheit bereits verschiedene geologische und bodenfachkundige Abklärungen erfolgt. Die Erkenntnisse sind in den folgenden beiden Berichten dokumentiert:

- [1] Gruner AG (29.3.2019): Umweltverträglichkeitsbericht Voruntersuchung, Trassee Ostumfahrung Suhr, Suhr / Gränichen IO / AO NK241.
- [2] Jäckli Geologie AG (31.8.2022): NK240 Südumfahrung Suhr (Los 1), Suhr / AG, Geologisch-geotechnischer Bericht.

Bodenschutz

Fruchtbarer Boden ist ein in Jahrtausenden entstandenes, wertvolles Gut, das kurzfristig weder ersetzt noch erneuert werden kann. Gemäss der Verordnung über Belastungen des Bodens (VBBo) darf Boden durch Bauarbeiten nicht geschädigt werden und die Bodenfruchtbarkeit muss erhalten bleiben. Im Weiteren dürfen chemische Bodenbelastungen nicht verschleppt werden und belastete Böden sind fachgerecht zu entsorgen resp. zu verwerten.

Nachfolgend sind relevante gesetzliche und bodenfachkundige Grundlagen sowie kantonale Merkblätter aufgelistet.

- [3] Umweltschutzgesetz (USG), SR 814.01 vom 7. Oktober 1983.
- [4] Verordnung über Belastungen des Bodens (VBBo), SR 814.12 vom 1. Juli 1998.
- [5] Verordnung über die Vermeidung und die Entsorgung von Abfällen (Abfallverordnung, VVEA), SR 814.600 vom 4. Dezember 2015.
- [6] Eidgenössische Forschungsanstalt für Agrarökologie und Landbau (FAL) Zürich-Reckenholz (1997): Kartieren und Beurteilen von Landwirtschaftsböden. Publikation 24.

- [7] Bodenkundliche Gesellschaft der Schweiz BGS (2010): Klassifikation der Böden der Schweiz.
- [8] Schweizerischer Verband der Strasse- und Verkehrsfachleute VSS (31.12.2017): Erdbau, Boden; Bodenschutz und Bauen. SN 640 581.
- [9] Bundesamt für Umwelt BAFU (2020): Bauabfälle. Ein Modul der Vollzugshilfe zur Abfallverordnung, VVEA.
- [10] Bundesamt für Umwelt BAFU (2021): Beurteilung von Boden im Hinblick auf seine Verwertung. Verwertungseignung von Boden. Ein Modul der Vollzugshilfe «Bodenschutz beim Bauen».
- [11] Fachverband der Schweizerischen Kies- und Betonindustrie FSKB (2021): FSKB-Rekultivierungsrichtlinie. Richtlinie für den sachgerechten Umgang mit Boden.
- [12] Bundesamt für Umwelt BAFU (2022): Sachgerechter Umgang mit Boden beim Bauen. Bodenschutzmassnahmen auf Baustellen. Ein Modul der Vollzugshilfe «Bodenschutz beim Bauen».

2 DURCHGEFÜHRTE UNTERSUCHUNGEN

2.1 Profilaufnahmen

Zur Untersuchung der im Projektperimeter vorhandenen Böden wurden am 7.7., 8.7. und 21.7.2022 insgesamt neun Bodenprofile bodenkundlich aufgenommen und gemäss [6] und [7] beurteilt (Lage vgl. *Beilage 1*):

•	22-3.6	Kernbohrung
•	22-3.7	Baggerschacht
•	22-3.8	Baggerschacht
•	22-3.9	Baggerschacht
•	22-3.10	Baggerschacht
•	22-3.12	Kernbohrung
•	22-3.15	Baggerschacht
•	22-3.26E	Baggerschacht

2.2 Untersuchung chemische Belastung

Baggerschacht

22-3.27D

Entlang der Suhrentalstrasse, der Weltimattstrasse, dem Obertelweg sowie der Langmattstrasse, der Autobahn A1 und der Gränicherstrasse besteht gemäss dem kantonalen Prüfperimeter Bodenaushub (PPBA) teilweise ein Verdacht auf chemische Belastungen.

Für die Untersuchung des Bodens wurden am 4./5.8.2022 parallel entlang der Strassen nach Verordnung über Belastungen des Bodens (VBBo) an neun Stellen in unterschiedlichen Abständen zur Strasse Linienproben entnommen (Lage vgl. *Beilage 1*).

•	22-3.25A	westlich Suhrentalstrasse, 4 m ab Strassenrand
•	22-3.25B	östlich Suhrentalstrasse, westlich und östlich Feldweg
•	22-3.30A	nördlich Weltimattstrasse, 1 m, 3 m und 5 m ab Strassenrand
•	22-3.30B	nördlich Weltimattweg, 1 m, 3 m und 5 m ab Strassenrand
•	22-3.30C	nördlich Obertelweg, 1 m, 3 m und 5 m ab Strassenrand
•	22-3.27B	westlich Langmattweg, 1 m, 4 m und 7 m ab Strassenrand
•	22-3.27C	östlich Langmattweg, 1 m, 4 m und 7 m ab Strassenrand
•	22-3.28	nördlich Autobahn A1, 1 m und 4 m ab Böschungskrone
•	22-3.29	westlich Gränicherstrasse, 1 m, 4 m und 7 m ab Strassenrand

Auf jeder Linie wurden aus insgesamt 16 Einstichen aus 0.0–0.2 m und 0.2–0.4 m je zwei tiefenabhängige Mischproben erstellt (Ausnahme: 22-3.27B: nur aus 0.0–0.2 m). Die Mischproben wurden bodenkundlich beschrieben und im Labor nach VBBo auf Blei, Cadmium, Kupfer, Zink und Polyzyklische Aromatische Kohlenwasserstoffe (PAK) chemische analysiert.

Innerhalb eines Streifens von 0–1 m vom Strassenrand liegt erfahrungsgemäss ohnehin eine starke Belastung mit PAK und Blei vor. Dieser «Opferstreifen» wurde daher nicht untersucht.

3 ERGEBNISSE

3.1 Bodeneigenschaften

In den Profilblättern in *Beilage 2* ist der Bodenaufbau der Sondierungen detailliert beschrieben. In *Beilage 3* sind die Bohrkerne resp. Bodenprofile fotografisch dokumentiert. Die Befunde der bodenkundlichen Aufnahmen sind in *Tabelle 1* zusammengefasst.

Die Profile zeigen tiefgründige bis sehr tiefgründige Braunerden, Parabraunerden und Kalkbraunerden, welche über Alluvionen (Schwemmsedimenten) und Schotter entstanden sind. Die Böden weisen Nutzungsklasse (NEK) 1–2 auf und gelten damit als Fruchtfolgeflächen (FFF) 1. Güteklasse.

Die Böden sind nicht eingestaut. Gemäss [2] ist der Grundwasserspiegel selbst bei Hochwasser höchstens bei ca. 5 m u.T. zu erwarten.

Tabelle 1: Angetroffene Bodeneigenschaften gemäss [6] und [7]

Sondierung	22-3.6	22-3.7	22-3.8	22-3.9	22-3.10	22-3.12	22-3.15	22-3.26E	22-3.27D
Profilart	Kernbohrung	Baggerschacht	Kernbohrung	Baggerschacht	Baggerschacht	Kernbohrung	Baggerschacht	Baggerschacht	Baggerschacht
Allgemeine Angaben									
Bodentyp	Braunerde	Parabraunerde	Parabraunerde	Braunerde	Braunerde	Kalkbraunerde	Braunerde	Braunerde	Braunerde
Untertypen	teilweise entkarbonatet	schwach pseudogleyig / sauer	schwach sauer	neutral	karbonathaltig	schwach pseudogleyig	schwach sauer, karbonathaltig	schwach sauer	schwach sauer
Ausgangsmaterial	Alluvionen / Schotter	Alluvionen / Schotter	Alluvionen / Schotter	Alluvionen / Schotter	Alluvionen / Schotter	Alluvionen / Schotter	Alluvionen / Schotter	Alluvionen / Schotter	Alluvionen / Schotter
Oberboden (A-Horizont)	Oberboden (A-Horizont)								
Mächtigkeit (cm)	30	30	30	30	30	30	30	30	30
Feinerdekörnung ¹⁾	sandiger Lehm	lehmreicher Sand	lehmreicher Sand	sandiger Lehm	lehmiger Sand	sandiger Lehm	sandiger Lehm	lehmreicher Sand	sandiger Lehm
Skelettgehalt (Vol%) ²⁾	13	6	1	8	11	1	4	7	8
Unterboden (B-Horizont) 3)									
B-Horizont (cm)	150	50	60	50	57	100	65	90	100
Feinerdekörnung ¹⁾	Lehm	lehmreicher Sand	lehmiger Sand	lehmreicher Sand	lehmreicher Sand	sandiger Lehm	lehmreicher Sand	lehmiger Sand	sandiger Lehm
Skelettgehalt (Vol%) ²⁾	35	17	2	9	11	1	15	8	16
Weitere Merkmale									
Verdichtungs- empfindlichkeit ⁴⁾	schwach empfindlich	schwach empfindlich	schwach empfindlich	schwach empfindlich	schwach empfindlich	schwach empfindlich	schwach empfindlich	schwach empfindlich	schwach empfindlich
PNG ⁵⁾	124	88	94	73	76	120	76	129	109
Wasserhaushaltsgruppe	a	b	b	b	b	a	b	a	a
Nutzungseignungsklasse ⁶⁾	1	2	2	1	2	1	1	1	1
Fruchtfolgefläche gem. [6]	-	Α	Α	-	Α	-	-	-	-

Feinerde: umfasst Ton (0.002–0.05 cm), Schluff (0.05–2 mm) und Sand (2–50 mm) 1)

Skelett: umfasst Kies (0.2–5 cm) und Steine (>5 cm) 2)

teils inkl. I-Horizont 3)

Beurteilung nach [8] 4)

PNG: Pflanzennutzbare Gründigkeit, Herleitung nach [6], gerundet auf ganze Zahl Limitierender Faktor (I Stauwasser / A Bodenart) 5)

3.2 Chemische Belastungen

Ergebnisse

Die für die chemischen Analysen entnommenen Mischproben sind in der *Tabelle 2* beschrieben, die Resultate sind im Laborbericht in *Beilage 4* dokumentiert und in *Beilage 1* grafisch dargestellt.

Im Abschnitt Weltimattstrasse und Weltimattweg waren in keiner der beprobten Linien (22-3.30A und 30B) Richtwertüberschreitungen gemäss VBBo nachweisbar.

In allen Linienproben entlang der Suhrentalstrasse (22-3.25A und 25B), des Obertelwegs (22-3.30C), der A1 (22-3.28) und der Gränicherstrasse (22-3.29) wurden teilweise Richtwertüberschreitungen für Blei, PAK, Benzo(a) pyren (BaP) und teilweise Kupfer nachgewiesen.

In den Linienproben beidseitig des Langmattwegs (22-3.27B und 27C) wurden im Abstand von 1 m zur Strasse Prüfwertüberschreitungen für PAK und BaP nachgewiesen. In den Proben weiter östlich des Langmattwegs wurden die Richtwerte noch überschritten, in den Proben weiter westlich hingegen waren keine Richtwertüberschreitungen mehr nachweisbar.

Wenn keine Richtwertüberschreitungen vorliegen, gilt der Boden gemäss VBBo als *unbelastet*. Boden mit Richtwertüberschreitungen gilt als *schwach belastet*, Boden mit Prüfwertüberschreitungen als *stark belastet*.

Ausdehnung der Belastung

Für atmosphärisch und/oder mit dem Strassenabwasser in den Boden eingetragene Schadstoffe ist grundsätzlich eine Abnahme der Gehalte mit der Tiefe sowie mit zunehmender Distanz zur Strasse zu erwarten.

Eine Abnahme der Schadstoffbelastung mit zunehmender Distanz zur Strasse konnte bei allen Beprobungsstellen beobachtet werden. Entsprechend ist die horizontale Ausdehnung der Belastung bereits dokumentiert oder aber sie lässt sich anhand der Resultate prognostizieren.

Eine Abnahme der Schadstoffbelastung mit der Tiefe war teilweise nicht erkennbar. Dies kann u.a. durch evtl. erfolgte lokale Umlagerungen bedingt sein. Eine vertikale Eingrenzung der Belastung resp. eine zuverlässige Prognose zur Abgrenzung ist daher dort nicht möglich.

Tabelle 2: Angetroffener Boden

Sondierung	Tiefe (ca. m u.T.)	Farbe	Beschrieb Feinerde	Skelett (ca. Gew%)	Fremdstoffe (ca. Gew%)
22-3.25A (4 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	-
22-3.25B östlich	0.0-0.2	dunkelbraun nicht formbar, sandig, körnig		5-10	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1-3	<1 (Bauschutt)
22-3.25B westlich	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5-10	<1 (Bauschutt)
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1-3	<1 (Bauschutt)
22-3.27B (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	_
22-3.27B (4 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	_
22-3.27B (7 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	-
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	_
22-3.27C (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig (wenig Material)	1	_
22-3.27C (4 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	<1 (Bauschutt)
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	_
22-3.27C (7 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	-
	0.2-0.4	hellbraun	nicht formbar, sandig, körnig	1–3	-
22-3.28 (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	<1 (Bauschutt)
22-3.28 (4 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	<1

Sondierung	Sondierung Tiefe (ca. m u.T.)		Beschrieb Feinerde	Skelett (ca. Gew%)	Fremdstoffe (ca. Gew%)
22-3.29 (1 m)	0.0-0.2			1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	<1 (Bauschutt)
22-3.29 (4 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	_
22-3.29 (7 m)	0.0-0.2	dunkelbraun	formbar, bindig, wenig klebrig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	<1 (Bauschutt)
22-3.30A (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	<1 (Bauschutt)
22-3.30A (3 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	<1 (Bauschutt)
22-3.30A (5 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	<1 (Bauschutt)
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	<1 (Bauschutt)
22-3.30B (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	5–10	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	<1 (Bauschutt)
22-3.30B (3 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	<1 (Bauschutt)
22-3.30B (5 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1–3	_
22-3.30C (1 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	<1 (Bauschutt)
22-3.30C (3 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	-
22-3.30C (5 m)	0.0-0.2	dunkelbraun	nicht formbar, sandig, körnig	1–3	_
	0.2-0.4	hellbraun	formbar, bindig, wenig klebrig	1	_

4 WEITERES VORGEHEN

4.1 Bodenkundliche Baubegleitung (BBB)

Im Hinblick auf die Bauausführung ist die Ausarbeitung eines Bodenschutzkonzepts erforderlich und der Bodenschutz muss während der Ausführung durch eine Bodenkundliche Baubegleitung (BBB) gewährleistet werden (voraussehbare Auflagen).

Die Baueingriffe sind so durchzuführen, dass die vorhandenen Böden in ihrer Funktion bzw. Fruchtbarkeit langfristig nicht beeinträchtigt werden.

Der Inhalt des Bodenschutzkonzepts umfasst u.a. Folgendes:

- Festlegung von projektspezifischen Bodenschutzmassnahmen.
- Detaillierte Materialbilanz für den von Umlagerungen betroffenen Boden.
- Angaben zum Verlust von FFF.
- Pflichtenheft für die Bodenkundliche Baubegleitung (BBB).

Die im vorliegenden Bericht dokumentierten Untersuchungsresultate bilden die Grundlage für das Ausarbeiten des Bodenschutzkonzepts. Ergänzende Untersuchungen, insbesondere zur Ausdehnung der chemischen Belastungen, werden nach dem Vorliegen der detaillierten Projektpläne empfohlen.

4.2 Hinweis zur Ausführbarkeit von Erdarbeiten

Zur Gewährleistung des physikalischen Bodenschutzes dürfen Erdarbeiten grundsätzlich nur bei genügend abgetrockneten Böden ausgeführt werden. Solche Bedingungen werden in der Regel nur während der Vegetationsperiode erreicht (ca. April bis Oktober). Es muss im Terminprogramm genügend Spielraum für witterungsbedingte Unterbrüche einberechnet werden. Die entsprechenden Vorgaben werden im Bodenschutzkonzept festgelegt.

Zürich, 15. September 2022

150249 Bericht_Boden Los 3.docx IB/Ke

Jäckli Geologie AG

Projektbearbeitung:

Isabel Baur, Dr. sc. nat. ETH, Umwelt-Natw., BBB BGS¹

¹ BBB BGS: BBB anerkannt durch die Bodenkundliche Gesellschaft der Schweiz

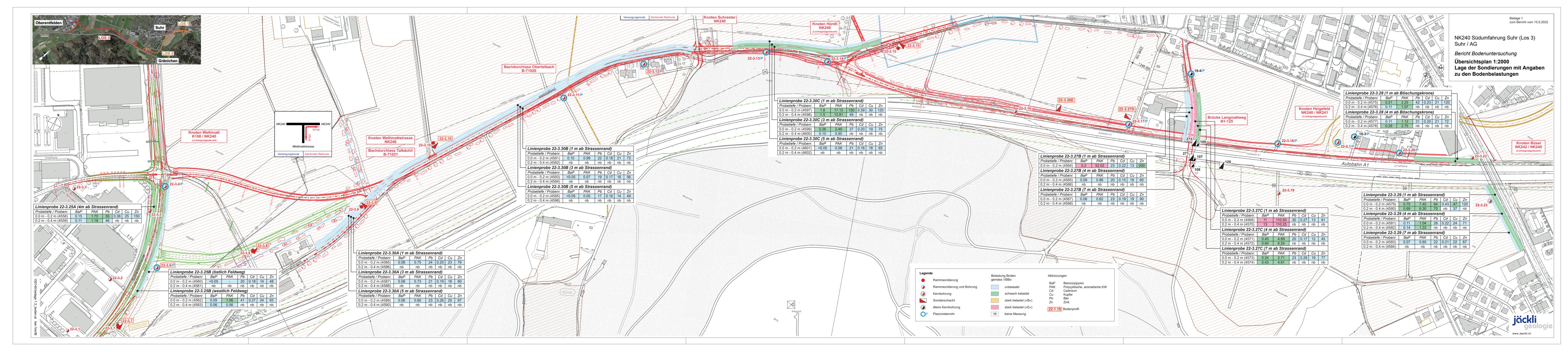
10 | 10

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK240 Südumfahrung Suhr (Los 3) Suhr / AG

Bericht Bodenuntersuchung

Beilagen


Beilage 1: Übersichtsplan 1:2'000, Lage der Sondierungen mit Angaben zu den

Bodenbelastungen

Beilage 2: Boden-Profilblätter

Beilage 3: Fotodokumentation Bodenprofile

Beilage 4: Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

Beilage 2 zum Bericht vom 15.9.2022

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK240 Südumfahrung Suhr (Los 3) Suhr / AG

Bericht Bodenuntersuchung

Boden-Profilblätter

Situation Topographie / Geologie Titeldaten Projekt-Nr. Profil-art Daten-Profil-Pedologe Datum schlüssel bezeichnung 166 Polit.Gem. el Gem. Scrent Kanton Nr. Ort Flurname Blatt-Nr. 1:25'000 Koordinaten Kartierungs-15 code Bemerkungen Bodenbezeichnung Branerde Bodentyp 13 1352 16 tei/weise Untertyp 30.0.87= 26.1 Skelettgehalt 19 150.065=197.5 Feinerdekörnung 0 Wasserhaushaltsgruppe / 24cm Pflanzennutzbare Gründigkeit a Neigung Geländeform 25 % 26 **Profilskizze** 27 28 29/30 31/32 33/34 35/36 37/38 39/40 41 (43) 42 44/45 46/47 48 - 55 56 Horizont organ Sub. Kies (0.2-5) Vol. % Steine (>5cm) Vol. % Kalk CaCO pH CaCl₂ Farbe (Munsell) Proben Bemerkun-Ton Schluff Sand Profilskizze Gefüge Tiefe Bezeichnung % % gen 35 61 10 20 30 30 40 25 50 60 70 80 90 100 120 Por 140 180 160 Profiltiefe 180 57 Standort Bewertung / Eignung Höhe ü. M. m Vegetation aktuell Landsch. element Nutzungs-gebiet Boden-punktzahl Eignungs-klasse Exposition Klima-Ausgangs-material Stufe Eignung eignungszone 65 73 76 AK EE Nutzungsbeschränkungen / Meliorationen Krumenzustand Limitierungen Nutzungsbeschränkung Düngereinsatz festgestellte empfohlene flüssig fest 66 67 68 71 Wald Prod.-fähigkeit Stufe | Punkte Humus-Bestand Baumhöhe, m Vorrat, m3/ha Alter, J Gesell-schaft Geeignete Baumarten gesch. gesch gem. gesch. gem. gem. 100 101 102 103 104 105 106 107 108 109 110 111

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe Datum schlüssel Nr. bezeichnung Polit.Gem. Oseson Gem. Kanton Nr Ort Flurname Blatt-Nr. Koordinaten 245 095 Kartierungs-15 code Bemerkungen Bodenbezeichnung Paras remerde Bodentyp 16 1355 feldrand 17 schwach pounds leyis, schwach save Kleemese Untertyp schwach shelethalty user steinhalt Skelettgehalt 30.0,54 = 28.2 4 Feinerdekörnung 50.0.83.0.9 = 37.4 40.0.55 = 22 6 Wasserhaushaltsgruppe / 8cm Pflanzennutzbare Gründigkeit elser Neigung Geländeform 25 0 % **Profilskizze** 28 29/30 33/34 35/36 37/38 39/40 41 (43) 42 44/45 46/47 48 - 55 56 31/32 Horizont pH CaCl₂ Gefüge Profilskizze organ Ton Schluff Sand Kies Steine Kalk Farbe Proben Sub. (0.2-5) (>5cm) Vol. % Vol. % CaCO (Munsell) Bemerkun-Nr. Tiefe Bezeichnung % % gen 14 45 46 5 5-6 10 20 (H) 30 hell) 80 90 30 Da-100 120 140 160 Profiltiefe 180 57 120 Standort Bewertung / Eignung Vegetation aktuell Boden-punktzahl Landsch. element Nutzungs-gebiet Eignungs-klasse Höhe ü. M. m Ausgangs-material Exposition Klima-Stufe Eignung eignungszone 65 73 58 59 60 61 64 414 0 KW AL/SC Nutzungsbeschränkungen / Meliorationen Nutzungsbeschränkung Krumenzustand Limitierungen Meliorationen Düngereinsatz festgestellte empfohlene fest flüssig 66 68 71 67 Wald Prod.-fähigkeit Stufe | Punkte Humus-form Vorrat, m³/ha Gesell-schaft Bestand Baumhöhe, m Alter, J Geeignete Baumarten gesch gesch. gem. gesch. gem. 100 101 102 103 104 105 106 107 108 109 110 111

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe Datum schlüssel Nr. art bezeichnung B 2022 Polit.Gem. Loca Gem. 10 Kanton Nr. Ort Flurname Blatt-Nr. 03 Koordinaten 14 1:25'000 Kartierungs-15 code Bemerkungen Bodenbezeichnung Parabrainerde Bodentyp 1355 16 olunstanese 17 (gurant Schwach saves Untertyp Sheletarm Skelettgehalt PNG Sord Ber Chrisen São ohmerches Feinerdekörnung 30.099 30.0.98 = 29.4 duchwaschen 6 Wasserhaushaltsgruppe / 30.09 tiefgrondie 94cm = 7.5 Pflanzennutzbare Gründigkeit 93.6 elser Neigung 25 % Geländeform 2 Profilskizze 39/40 27 28 33/34 35/36 37/38 41 (43) 42 44/45 46/47 29/30 31/32 48 - 55 56 Kalk CaCO₃ CaCl₂ Horizont Profilskizze Gefüge organ Ton Schluff Sand Kies Steine Farbe Proben Sub. (0.2-5) (>5cm) Vol. % Vol. % (Munsell) Bemerkun-Nr. Tiefe Bezeichnung % % % gen 0 56 32 1 12 G 2 0 braun 5 10 20 30 100151 30 40 0 9 36 1 5 50 60 60 70 8 80 1 90 90 100 120 140 160 Profiltiefe 180 57 100 Standort Bewertung / Eignung Boden-punktzahl Klima-eignungszone Nutzungs-gebiet Vegetation aktuell Eignungs-klasse Höhe ü. M. Exposition Ausgangs-material Landsch. Stufe Eignung element 73 58 59 61 62/63 64 65 76 60 413 KW AL/SC 0 Nutzungsbeschränkungen / Meliorationen Nutzungsbeschränkung Meliorationen Düngereinsatz Krumenzustand Limitierungen flüssig festgestellte empfohlene fest 66 67 68 70 71 72 Wald Humus-form Bestand Baumhöhe, m Vorrat, m3/ha Alter, J Gesell-schaft Geeignete Baumarten Prod.-fähigkeit gesch Stufe | Punkte gesch. gem. gesch. gem. gem. 100 101 102 103 104 105 106 107 108 109 110 111

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe Datum schlüssel Nr. art bezeichnung 202 Polit.Gem. Gem. Osesent Kanton Nr. Ort Flurname Blatt-Nr. 14 Koordinaten 1:25'000 Kartierungscode Bodenbezeichnung Bemerkungen Granesal 352 Bodentyp B 16 17 (semsht neutral EA Untertyp Schwach skelethaltig Skelettgehalt PNG 30.092 Lehm Oser Lehmreichem Sard Feinerdekörnung 50.0.91 6 durchwasche Senkrecht Wasserhaushaltsgruppe / ticf grandia 2 Pflanzennutzbare Gründigkeit 73cm Geländeform 0 % 0 Neigung 25 **Profilskizze** 27 28 33/34 37/38 39/40 41 (43) 42 44/45 46/47 56 29/30 31/32 35/36 48 - 55 Horizont pH CaCl₂ Profilskizze Gefüge organ Ton Schluff Sand Kies Steine Kalk Farbe Proben Sub. (0.2-5) Vol. % (>5cm) Vol. % CaCO (Munsell) Bemerkun-Bezeichnung Nr. Tiefe % % % gen 3 33 18 49 2 6 10 20 30 30 rells/ 40 50 6 60 70 80 54 40 serle 90 7 100 120 140 160 Profiltiefe 180 57 80 Standort Bewertung / Eignung Klima-eignungszone Boden-punktzahl Vegetation aktuell Nutzungs-gebiet Eignungs-klasse Höhe ü. M. Exposition Ausgangs-material Landsch. Stufe Eignung element 73 76 58 59 61 62/63 64 65 60 412 AT KW ALISC PE 1 D 0 Nutzungsbeschränkungen / Meliorationen Meliorationen Düngereinsatz Krumenzustand Limitierungen Nutzungsbeschränkung flüssig festgestellte empfohlene fest 66 67 68 69 70 71 72 Wald Humus-form Prod.-fähigkeit Stufe | Punkte Bestand Baumhöhe, m Vorrat, m3/ha Alter, J Gesell-schaft Geeignete Baumarten gesch gesch. gem. gesch gem. gem. 100 101 102 104 105 106 107 108 109 110 111 103

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe Datum schlüsse Nr. art bezeichnung 18 10 Polit.Gem. Gem. SU 10 Kanton Nr Ort Flurname Blatt-Nr. 629 Koordinaten 1:25'000 Kartierungs-15 code Bemerkungen Bodenbezeichnung Marsfeld Braunerde **Bodentyp** 16 B 1352 harbonat haltig KH Untertyp = 26.7 30.0.89 Skelettgehalt 30.0189 = 26.7 27.093.09 = 22,6 19 Feinerdekörnung durchhesche Wasserhaushaltsgruppe / tofewordie 2 Pflanzennutzbare Gründigkeit 76cm Neigung 2 eben Geländeform 25 0 % **Profilskizze** 28 29/30 27 31/32 33/34 35/36 37/38 39/40 41 (43) 42 44/45 46/47 48 - 55 56 Horizont organ Sub. % Ton Steine Profilskizze Gefüge Schluff Sand Kies Kalk рΗ Farbe Proben CaCO₃ (0.2-5) Vol. % (>5cm) Vol. % CaCl₂ (Munsell) Bemerkun-Tiefe Bezeichnung % % % gen 0 3 10 0 20 30 30 nell 40 50 35 (00) 60 70 56 6 8-7 90 100 120 140 160 Profiltiefe 57 180 100 Bewertung / Eignung Standort Klima-eignungszone Vegetation aktuell Nutzungs-gebiet Boden-punktzahl Landsch. element Eignungs-klasse Höhe ü. M. Ausgangs-material Exposition Stufe Eignung 64 65 73 74 76 59 61 62/63 410 AS AK 0 Nutzungsbeschränkungen / Meliorationen Krumenzustand Limitierungen Nutzungsbeschränkung Meliorationen Düngereinsatz festgestellte empfohlene fest flüssig 66 67 68 71 70 A Wald Prod.-fähigkeit Stufe | Punkte Humus-form Vorrat, m3/ha Alter, Gesell-schaft Bestand Baumhöhe, m Geeignete Baumarten gesch gesch. gem. gesch gem. gem. 101 100 102 103 104 105 106 107 108 109 110 111

Situation Topographie / Geologie Titeldaten Projekt-Nr. Profil-art Daten-Profil-Pedologe Datum schlüssel bezeichnung 6 16 Gem. Polit.Gem. SULV Kanton Nr. Ort Flurname Blatt-Nr. 1:25'000 920 Koordinaten Kartierungs-15 code Bemerkungen Bodenbezeichnung Kalkbraunerdo 35-3 Bodentyp 16 Untertyp Skelettgehalt Feinerdekörnung waseha 2 Wasserhaushaltsgruppe / Pflanzennutzbare Gründigkeit 12.cm Neigung Geländeform % **Profilskizze** 44/45 27 28 29/30 31/32 33/34 35/36 37/38 39/40 41 (43) 42 46/47 48 - 55 56 Horizont organ Sub. Ton Schluff Kalk pH CaCl₂ Sand Kies Steine Farbe Proben Profilskizze Gefüge (0.2-5) Vol. % (>5cm) Vol. % CaCO % (Munsell) Bemerkun-Nr. Tiefe Bezeichnung % % % gen 0 13 10 20 30 40 36 16 + 50 60 70 80 90 30 100 120 130 140 0 160 25 Profiltiefe 180 20 57 Standort Bewertung / Eignung Nutzungs-gebiet Vegetation aktuell Klima-eignungszone Ausgangs-material Landsch. element Boden-punktzahl Eignungs-klasse Höhe ü. M. Exposition Stufe Eignung 73 74 75 76 62/63 65 40 (2) AL AL/SC Nutzungsbeschränkungen / Meliorationen Nutzungsbeschränkung Meliorationen Düngereinsatz Krumenzustand Limitierungen festgestellte empfohlene fest flüssig 66 68 71 Wald Prod.-fähigkeit Stufe | Punkte Vorrat, m³/ha Alter, J Gesell-schaft Humus-form Bestand Baumhöhe, m Geeignete Baumarten gesch gesch. gesch gem. gem. 109 110 105 107 108 100 101 102 103 104 106 111

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe Datum Nr. bezeichnung art Polit.Gem. Gem. Suns 10 Kanton Nr. Ort Flurname Blatt-Nr. 1:25'000 Koordinaten Kartierungs-15 Bemerkungen Bodenbezeichnung Bounesde weizefeld asguerntet Bodentyp 16 1352 in enterosish, Schwach Souls Untertyp kioshaltia Sheletterm Ber Skelettgehalt 2 Sandiger Lehm Ber Lehmreicher Sand 4 PNB Feinerdekörnung served towarkaschen Wasserhaushaltsgruppe / 25.0.85 40.0.65 76cm Pflanzennutzbare Gründigkeit Neigung 25 0 % Geländeform 26 **Profilskizze** 28 27 33/34 41 (43) 42 44/45 29/30 31/32 35/36 37/38 39/40 46/47 48 - 55 Horizont pH CaCl₂ organ Ton Schluff Sand Kies Steine Kalk Farbe Profilskizze Gefüge Proben (0.2-5) Vol. % (>5cm) Vol. % CaCO. (Munsell) Bemerkun-Tiefe Bezeichnung Nr. % % % % 0 3 25 49 34 20 30 30 52 hall-Po 4 40 50 60 70 80 90 95 100 0 120 140 160 Profiltiefe 180 57 Standort Bewertung / Eignung Vegetation aktuell Boden-punktzahl Höhe ü. M. m Ausgangs-material Nutzungs-gebiet Eignungs-klasse Exposition Klima-Landsch. Stufe Eignung eignungszone element 73 75 64 65 76 58 59 60 61 62/63 AK 403 AS ALISC PE 0 Nutzungsbeschränkungen / Meliorationen Nutzungsbeschränkung Krumenzustand Limitierungen Meliorationen Düngereinsatz festgestellte empfohlene fest flüssig 66 67 68 69 72 Wald Gesell-schaft Prod.-fähigkeit Stufe | Punkte Humus-Bestand Baumhöhe, m Vorrat, m3/ha Alter, J Geeignete Baumarten gesch gem. gesch gesch. gem. gem. 101 104 107 108 109 110 100 102 103 105 106 111

Situation Topographie / Geologie Titeldaten Daten-Projekt-Profil-Profil-Pedologe Datum schlüssel Nr. art bezeichnung 6 16 E 7 Polit.Gem. Gem. 10 Kanton Nr. Ort 11 Flurname Blatt-Nr. 1:25'000 Koordinaten Kartierungs-15 code Bemerkungen Bodenbezeichnung Brunerde Bodentyp 16 B 1352 17 Schwach saves Untertyp 18 PNG schwach skeletthaltie Skelettgehalt 30.0.93 alampeither 52rd Der Cohmixen Feinerdekörnung 90-092 50.0.92.0,4=18.4 duchuascher 2 Wasserhaushaltsgruppe / Selv tofourdi-29cm Pflanzennutzbare Gründigkeit ese 3 Neigung Geländeform 25 0 26 Profilskizze 33/34 39/40 41 (43) 42 44/45 46/47 56 27 28 31/32 35/36 37/38 48 - 55 29/30 Horizont pH CaCl organ. Sub. Ton Schluff Sand Kies Steine Kalk Farbe Proben Profilskizze Gefüge (>5cm) Vol. % (0.2-5)CaCO, (Munsell) Bemerkun-Nr. Tiefe Bezeichnung % % Vol. % gen +) 5-6 10 20 30 40 45 60 70 80 90 100 120 120 140 160 Profiltiefe 180 57 170 Standort Bewertung / Eignung Boden-punktzahl Vegetation aktuell Nutzungs-gebiet Eignungs-klasse Höhe ü. M. Exposition Klima-Ausgangs-material Landsch. Stufe Eignung eignungszone element 73 74 75 76 62/63 65 58 61 64 405 AK 1 2 AL Nutzungsbeschränkungen / Meliorationen Krumenzustand Limitierungen Nutzungsbeschränkung Meliorationen Düngereinsatz festgestellte empfohlene fest flüssig 72 66 67 68 71 Wald Humus-form Vorrat, m³/ha gem. | gesch Alter, Prod.-fähigkeit Stufe | Punkte Bestand Baumhöhe, m Geeignete Baumarten Gesell-schaft gesch gem. gem. gesch. 100 101 102 103 104 105 106 107 108 109 110 111

Situation Topographie / Geologie Titeldaten Daten-Profil-Projekt-Profil-Pedologe Datum Nr. bezeichnung schlüssel art 5 3 4 6 Polit.Gem. SUL Gem. 10 Nr. Kanton Flurname Blatt-Nr. Koordinaten 1:25'000 Kartierungs-15 Bemerkungen Bodenbezeichnung Braunerde 13 Bodentyp 1352 16 E2 Untertyp 18 PN6 Shurch shelethalty Ber stenhack 3 Skelettgehalt Feinerdekörnung 2 Wasserhaushaltsgruppe / Pflanzennutzbare Gründigkeit 109cm Agroscope FAL Reckenholz, Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, CH-8046 Zürich, © 2005 2 Neigung 25 % Geländeform 26 Profilskizze 35/36 29/30 31/32 33/34 37/38 39/40 41 (43) 42 44/45 46/47 48 - 55 27 28 Horizont Schluff Steine Kalk Farbe organ. Ton Sand Proben Profilskizze Gefüge (0.2-5) (>5cm) Vol. % Vol. % CaCO₃ Bemerkun-CaCI, (Munsell) Tiefe Bezeichnung Nr. % % % % gen 20 30 30 10 50 60 70 80 90 90 100 120 130 140 160 Profiltiefe 180 57 130 Bewertung / Eignung Standort Boden-punktzahl Nutzungs-gebiet Klima-eignungszone Exposition Vegetation aktuell Ausgangs-material Landsch. Stufe Eignung Eignungs-klasse Höhe ü. M. element 74 76 58 59 61 62/63 64 60 0 400 0 Nutzungsbeschränkungen / Meliorationen Limitierungen Nutzungsbeschränkung Meliorationen Düngereinsatz Krumenzustand empfohlene flüssig festgestellte fest 68 66 Wald Humus-Vorrat, m3/ha Alter, J Prod.-fähigkeit Bestand Baumhöhe, m Gesell-Geeignete Baumarten Stufe | Punkte gem. gesch. gem. gesch. gem. 110 109 111 100 101 102 104 105 108

Beilage 3 zum Bericht vom 15.9.2022

VERAS - Verkehrsinfrastruktur-Entwicklung Raum Suhr

NK240 Südumfahrung Suhr (Los 3) Suhr / AG

Fotodokumentation Bodenprofile

150249 B3 Fotodoku Los 3.docx IB

Foto 1: Profile Kernbohrungen 22-3.6 (links, Bohrung 10.6.2022, bodenkundliche Aufnahme 8.7.2022) und Kernbohrung 22-3.12 (rechts, Bohrung 25.5.2022, bodenkundliche Aufnahme 8.7.2022)

03 04 05 07 09

Foto 2: Profil Baggerchacht 22-3.7 (Ausführung und bodenkundliche Aufnahme 7.7.2022)

Foto 3: Profil Baggersondierschacht 22-3.8 (Ausführung und bodenkundliche Aufnahme 7.7.2022)

Foto 4: Profil Baggersondierschacht 22-3.9 (Ausführung und bodenkundliche Aufnahme 7.7.2022)

Foto 5: Profil Baggersondierschacht 22-3.10 (Ausführung und bodenkundliche Aufnahme 7.7.2022)

Foto 6: Profil Baggersondierschacht 22-3.15 (Ausführung und bodenkundliche Aufnahme 7.7.2022)

Foto 7: Profil Baggersondierschacht 22-3.26E (Ausführung und bodenkundliche Aufnahme 7.7.2022)

Foto 8: Profil Baggersondierschacht 22-3.27D (Ausführung und bodenkundliche Aufnahme 7.7.2022)

Beilage 4 zum Bericht vom 15.9.2022

VERAS - V	erkehrsin	frastruktur-	Entwicklun	a Raum	Suhr
-----------	-----------	--------------	------------	--------	------

NK240 Südumfahrung Suhr (Los 3) Suhr / AG

Bericht Bodenuntersuchung

Chemische Analysen Boden, Bericht Envilab AG vom 26.8.2022

www.envitab.ch
Akkreditiert ISO 17025

ANALYSENBERICHT NR. Z2291VERAS - L06 / 22

Boden-Untersuchung nach VBBo (Oberboden- und Unterboden-Untersuchung)

Auftraggeber, Ort: Kanton Aargau, Departement Bau, Verkehr und Umwelt

Projekt: NK 240, Südumfahrung (Los 3)

Probeentnahme durch: Jäckli Geologie AG
Eingang der Probe(n): 09.08.2022

Probennummer:	Probenbezeichnung Kunde:	Probenahme vom:
4558	22-3.25A (4m) 0.0-0.2	04.08.2022
4559	22-3.25A (4m) 0.2-0.4	04.08.2022
4560	22-3.25B (östlich) 0.0-0.2	04.08.2022
4561	22-3.25B (östlich) 0.2-0.4	04.08.2022
4562	22-3.25B (westlich) 0.0-0.2	04.08.2022
4563	22-3.25B (westlich) 0.2-0.4	04.08.2022
4564	22-3.27B (1m) 0.0-0.2	05.08.2022
4565	22-3.27B (4m) 0.0-0.2	05.08.2022
4566	22-3.27B (4m) 0.2-0.4	05.08.2022
4567	22-3.27B (7m) 0.0-0.2	05.08.2022
4568	22-3.27B (7m) 0.2-0.4	05.08.2022
4569	22-3.27C (1m) 0.0-0.2	05.08.2022
4570	22-3.27C (1m) 0.2-0.4	05.08.2022
4571	22-3.27C (4m) 0.0-0.2	05.08.2022
4572	22-3.27C (4m) 0.2-0.4	05.08.2022
4573	22-3.27C (7m) 0.0-0.2	05.08.2022
4574	22-3.27C (7m) 0.2-0.4	05.08.2022
4575	22-3.28 (1m) 0.0-0.2	05.08.2022
4576	22-3.28 (1m) 0.2-0.4	05.08.2022
4577	22-3.28 (4m) 0.0-0.2	05.08.2022
4578	22-3.28 (4m) 0.2-0.4	05.08.2022
4579	22-3.29 (1m) 0.0-0.2	05.08.2022

Weitere Proben und Analysenresultate siehe folgende Seiten

Probennummer:	Probenbezeichnung Kunde:	Probenahme vom:
4580	22-3.29 (1m) 0.2-0.4	05.08.2022
4581	22-3.29 (4m) 0.0-0.2	05.08.2022
4582	22-3.29 (4m) 0.2-0.4	05.08.2022
4583	22-3.29 (7m) 0.0-0.2	05.08.2022
4584	22-3.29 (7m) 0.2-0.4	05.08.2022
4585	22-3.30A (1m) 0.0-0.2	04.08.2022
4586	22-3.30A (1m) 0.2-0.4	04.08.2022
4587	22-3.30A (3m) 0.0-0.2	04.08.2022
4588	22-3.30A (3m) 0.2-0.4	04.08.2022
4589	22-3.30A (5m) 0.0-0.2	04.08.2022
4590	22-3.30A (5m) 0.2-0.4	04.08.2022
4591	22-3.30B (1m) 0.0-0.2	04.08.2022
4592	22-3.30B (1m) 0.2-0.4	04.08.2022
4593	22-3.30B (3m) 0.0-0.2	04.08.2022
4594	22-3.30B (3m) 0.2-0.4	04.08.2022
4595	22-3.30B (5m) 0.0-0.2	04.08.2022
4596	22-3.30B (5m) 0.2-0.4	04.08.2022
4597	22-3.30C (1m) 0.0-0.2	04.08.2022
4598	22-3.30C (1m) 0.2-0.4	04.08.2022
4599	22-3.30C (3m) 0.0-0.2	04.08.2022
4600	22-3.30C (3m) 0.2-0.4	04.08.2022
4601	22-3.30C (5m) 0.0-0.2	04.08.2022
4602	22-3.30C (5m) 0.2-0.4	04.08.2022

Analysenresultate siehe folgende Seiten

Analysenresultate

Parameter		Probeni	nummer		Best	Einheit	Methode/
	4558	4559	4560	4561	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	extern
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	55	46	20	nb	2	mg Pb/kg TS	ICP-OES
Cadmium	0.36	nb	0.18	nb	0.05	mg Cd/kg TS	ICP-OES
Kupfer	25	nb	14	nb	0.1	mg Cu/kg TS	ICP-OES
Zink	150	nb	48	nb	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	nb	0.05	mg/kg TS	GC-MS
Acenaphthylen	<0.05	<0.05	<0.05	nb	0.05	mg/kg TS	GC-MS
Acenaphthen	<0.05	<0.05	<0.05	nb	0.05	mg/kg TS	GC-MS
Fluoren	<0.05	<0.05	<0.05	nb	0.05	mg/kg TS	GC-MS
Phenanthren	0.06	<0.05	<0.05	nb	0.05	mg/kg TS	GC-MS
Anthracen	<0.05	<0.05	<0.05	nb	0.05	mg/kg TS	GC-MS
Fluoranthen	0.25	0.16	<0.05	nb	0.05	mg/kg TS	GC-MS
Pyren	0.19	0.15	<0.05	nb	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	0.13	0.09	<0.05	nb	0.05	mg/kg TS	GC-MS
Chrysen	0.18	0.13	<0.05	nb	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	0.28	0.21	<0.05	nb	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	0.12	0.09	<0.05	nb	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	0.15	0.11	<0.05	nb	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	0.17	0.11	<0.05	nb	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	<0.05	<0.05	<0.05	nb	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	0.17	0.13	<0.05	nb	0.05	mg/kg TS	GC-MS
Gesamt PAK	1.70	1.18	-	nb	-	mg/kg TS	GC-MS

Akkreditiert ISO 17025

Parameter		Probeni	nummer		Best	Einheit	Methode/
	4562	4563	4564	4565	grenze		Verfahren
TOC400	nb	nb	3.0	2.1	0.1	%TS	exterr
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	41	nb	23	20	2	mg Pb/kg TS	ICP-OES
Cadmium	0.27	nb	0.22	0.15	0.05	mg Cd/kg TS	ICP-OES
Kupfer	24	nb	13	16	0.1	mg Cu/kg TS	ICP-OES
Zink	93	nb	200	60	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	<0.05	<0.05	0.31	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthen	<0.05	<0.05	0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	<0.05	<0.05	0.13	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren	<0.05	<0.05	0.52	<0.05	0.05	mg/kg TS	GC-MS
Anthracen	<0.05	<0.05	0.81	<0.05	0.05	mg/kg TS	GC-MS
Fluoranthen	0.16	0.08	4.6	0.10	0.05	mg/kg TS	GC-MS
Pyren	0.14	0.08	4.1	0.08	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	0.09	<0.05	3.4	0.06	0.05	mg/kg TS	GC-MS
Chrysen	0.11	0.07	5.2	0.09	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	0.18	0.12	11	0.18	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	0.07	<0.05	3.7	0.07	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	0.09	0.06	5.2	0.09	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	0.11	0.07	6.1	0.10	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	<0.05	<0.05	1.4	<0.05	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	0.11	0.08	5.5	0.09	0.05	mg/kg TS	GC-MS
Gesamt PAK	1.06	0.56	52.02	0.86	-	mg/kg TS	GC-MS

Akkreditiert ISO 17025

Parameter		Probeni	nummer		Best	Einheit	Methode/
	4566	4567	4568	4569	grenze		Verfahren
TOC400	nb	2.2	nb	3.5	0.1	%TS	exterr
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	nb	23	nb	30	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.19	nb	0.27	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	19	nb	13	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	90	nb	91	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	nb	<0.05	nb	0.61	0.05	mg/kg TS	GC-MS
Acenaphthen	nb	<0.05	nb	0.13	0.05	mg/kg TS	GC-MS
Fluoren	nb	<0.05	nb	0.26	0.05	mg/kg TS	GC-MS
Phenanthren	nb	<0.05	nb	1.4	0.05	mg/kg TS	GC-MS
Anthracen	nb	<0.05	nb	1.8	0.05	mg/kg TS	GC-MS
Fluoranthen	nb	0.08	nb	11	0.05	mg/kg TS	GC-MS
Pyren	nb	0.07	nb	9.7	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	nb	0.05	nb	9.1	0.05	mg/kg TS	GC-MS
Chrysen	nb	0.06	nb	12	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	nb	0.12	nb	21	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	nb	0.05	nb	8.9	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	nb	0.06	nb	11	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	nb	0.07	nb	11	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	nb	<0.05	nb	2.9	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	nb	0.06	nb	9.7	0.05	mg/kg TS	GC-MS
Gesamt PAK	nb	0.62	nb	110.50	-	mg/kg TS	GC-MS

Parameter		Probeni	nummer		Best	Einheit	Methode/
	4570	4571	4572	4573	grenze		Verfahren
TOC400	nb	3.2	nb	2.1	0.1	%TS	exterr
Schwermetalle n. VBBo	(Fraktion <2mm)						1
Blei	nb	20	nb	23	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.17	nb	0.29	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	12	nb	19	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	45	nb	77	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatise	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	0.24	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthen	0.09	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	0.12	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren	1.5	0.08	0.11	<0.05	0.05	mg/kg TS	GC-MS
Anthracen	0.80	0.09	0.05	0.06	0.05	mg/kg TS	GC-MS
Fluoranthen	11	0.56	0.74	0.30	0.05	mg/kg TS	GC-MS
Pyren	10	0.45	0.63	0.24	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	8.9	0.42	0.53	0.19	0.05	mg/kg TS	GC-MS
Chrysen	12	0.50	0.70	0.29	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	21	0.86	1.1	0.55	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	9.0	0.34	0.48	0.21	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	13	0.45	0.64	0.24	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	11	0.45	0.61	0.30	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	2.4	0.12	0.14	0.07	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	9.2	0.37	0.51	0.26	0.05	mg/kg TS	GC-MS
Gesamt PAK	110.25	4.69	6.24	2.71	-	mg/kg TS	GC-MS

Parameter		Probeni	nummer		Best	Einheit	Methode/				
	4574	4575	4576	4577	grenze		Verfahren				
TOC400	nb	nb	nb	nb	0.1	%TS	exterr				
Schwermetalle n. VBBo	hwermetalle n. VBBo (Fraktion <2mm)										
Blei	nb	42	nb	31	2	mg Pb/kg TS	ICP-OES				
Cadmium	nb	0.23	nb	0.20	0.05	mg Cd/kg TS	ICP-OES				
Kupfer	nb	21	nb	21	0.1	mg Cu/kg TS	ICP-OES				
Zink	nb	120	nb	72	0.2	mg Zn/kg TS	ICP-OES				
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)								
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS				
Acenaphthylen	<0.05	0.10	<0.05	0.05	0.05	mg/kg TS	GC-MS				
Acenaphthen	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS				
Fluoren	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS				
Phenanthren	0.07	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS				
Anthracen	<0.05	0.09	<0.05	<0.05	0.05	mg/kg TS	GC-MS				
Fluoranthen	0.48	0.22	0.11	0.12	0.05	mg/kg TS	GC-MS				
Pyren	0.42	0.18	0.10	0.10	0.05	mg/kg TS	GC-MS				
Benz(a)anthracen	0.29	0.18	0.08	0.10	0.05	mg/kg TS	GC-MS				
Chrysen	0.50	0.21	0.11	0.11	0.05	mg/kg TS	GC-MS				
Benzo(b)fluoranthen	0.97	0.42	0.23	0.22	0.05	mg/kg TS	GC-MS				
Benzo(k)fluoranthen	0.38	0.17	0.09	0.09	0.05	mg/kg TS	GC-MS				
Benzo(a)pyren	0.43	0.21	0.11	0.11	0.05	mg/kg TS	GC-MS				
Indeno(1,2,3-c,d)pyren	0.51	0.23	0.13	0.12	0.05	mg/kg TS	GC-MS				
Dibenz(a,h)anthracen	0.11	0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS				
Benzo(g,h,i)perylen	0.45	0.19	0.11	0.10	0.05	mg/kg TS	GC-MS				
Gesamt PAK	4.61	2.25	1.07	1.12	-	mg/kg TS	GC-MS				

Parameter		Probent	nummer		Best	Einheit	Methode/
	4578	4579	4580	4581	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	exterr
Schwermetalle n. VBBo	(Fraktion <2mm)		<u> </u>				
Blei	nb	94	70	28	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.43	nb	0.22	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	47	37	24	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	120	nb	71	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatisc	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	0.06	0.16	0.08	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthen	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren	<0.05	0.09	0.09	<0.05	0.05	mg/kg TS	GC-MS
Anthracen	<0.05	0.22	0.09	<0.05	0.05	mg/kg TS	GC-MS
Fluoranthen	0.24	0.49	0.43	0.11	0.05	mg/kg TS	GC-MS
Pyren	0.23	0.47	0.42	0.09	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	0.22	0.49	0.41	0.09	0.05	mg/kg TS	GC-MS
Chrysen	0.28	0.61	0.54	0.11	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	0.57	1.4	1.30	0.22	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	0.23	0.54	0.48	0.09	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	0.29	0.75	0.69	0.11	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	0.31	1.00	0.82	0.12	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	0.07	0.23	0.18	<0.05	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	0.25	0.95	0.77	0.10	0.05	mg/kg TS	GC-MS
Gesamt PAK	2.75	7.40	6.30	1.04	-	mg/kg TS	GC-MS

Parameter		Probeni	nummer		Best	Einheit	Methode/			
	4582	4583	4584	4585	grenze		Verfahren			
TOC400	nb	nb	nb	nb	0.1	%TS	exterr			
Schwermetalle n. VBBo	hwermetalle n. VBBo (Fraktion <2mm)									
Blei	nb	22	nb	24	2	mg Pb/kg TS	ICP-OES			
Cadmium	nb	0.21	nb	0.20	0.05	mg Cd/kg TS	ICP-OES			
Kupfer	nb	22	nb	23	0.1	mg Cu/kg TS	ICP-OES			
Zink	nb	67	nb	76	0.2	mg Zn/kg TS	ICP-OES			
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)							
Naphthalin	<0.05	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS			
Acenaphthylen	<0.05	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS			
Acenaphthen	<0.05	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS			
Fluoren	<0.05	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS			
Phenanthren	<0.05	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS			
Anthracen	<0.05	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS			
Fluoranthen	0.12	0.08	nb	0.08	0.05	mg/kg TS	GC-MS			
Pyren	0.11	0.06	nb	0.07	0.05	mg/kg TS	GC-MS			
Benz(a)anthracen	0.09	0.05	nb	0.06	0.05	mg/kg TS	GC-MS			
Chrysen	0.12	0.06	nb	0.07	0.05	mg/kg TS	GC-MS			
Benzo(b)fluoranthen	0.26	0.13	nb	0.15	0.05	mg/kg TS	GC-MS			
Benzo(k)fluoranthen	0.11	0.05	nb	0.06	0.05	mg/kg TS	GC-MS			
Benzo(a)pyren	0.14	0.07	nb	0.08	0.05	mg/kg TS	GC-MS			
Indeno(1,2,3-c,d)pyren	0.14	0.08	nb	0.09	0.05	mg/kg TS	GC-MS			
Dibenz(a,h)anthracen	<0.05	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS			
Benzo(g,h,i)perylen	0.13	0.07	nb	0.09	0.05	mg/kg TS	GC-MS			
Gesamt PAK	1.22	0.65	nb	0.75	-	mg/kg TS	GC-MS			

Akkreditiert ISO 17025

Parameter		Probent	nummer		Best	Einheit	Methode/
	4586	4587	4588	4589	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	exterr
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	nb	21	nb	23	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.19	nb	0.26	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	18	nb	20	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	60	nb	67	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Anthracen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Fluoranthen	nb	0.09	nb	0.09	0.05	mg/kg TS	GC-MS
Pyren	nb	0.08	nb	0.08	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	nb	0.07	nb	0.07	0.05	mg/kg TS	GC-MS
Chrysen	nb	0.07	nb	0.06	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	nb	0.14	nb	0.11	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	nb	0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	nb	0.08	nb	0.06	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	nb	0.08	nb	0.07	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	nb	0.07	nb	0.06	0.05	mg/kg TS	GC-MS
Gesamt PAK	nb	0.73	nb	0.60	-	mg/kg TS	GC-MS

Parameter		Probeni	nummer		Best	Einheit	Methode/
	4590	4591	4592	4593	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	exterr
Schwermetalle n. VBBc	(Fraktion <2mm)						
Blei	nb	22	nb	19	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.18	nb	0.17	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	21	nb	16	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	73	nb	56	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Phenanthren	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Anthracen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Fluoranthen	nb	0.09	nb	<0.05	0.05	mg/kg TS	GC-MS
Pyren	nb	0.08	nb	<0.05	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	nb	0.08	nb	<0.05	0.05	mg/kg TS	GC-MS
Chrysen	nb	0.10	nb	<0.05	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	nb	0.21	nb	0.07	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	nb	0.08	nb	<0.05	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	nb	0.10	nb	<0.05	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	nb	0.13	nb	<0.05	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	nb	0.12	nb	<0.05	0.05	mg/kg TS	GC-MS
Gesamt PAK	nb	0.99	nb	0.07	-	mg/kg TS	GC-MS

Parameter	Probennummer				Best	Einheit	Methode/
	4594	4595	4596	4597	grenze		Verfahren
TOC400	nb	nb	nb	nb	0.1	%TS	extern
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	nb	17	nb	150	2	mg Pb/kg TS	ICP-OES
Cadmium	nb	0.16	nb	0.39	0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb	14	nb	30	0.1	mg Cu/kg TS	ICP-OES
Zink	nb	49	nb	120	0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatise	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Acenaphthylen	nb	<0.05	nb	0.35	0.05	mg/kg TS	GC-MS
Acenaphthen	nb	<0.05	nb	<0.05	0.05	mg/kg TS	GC-MS
Fluoren	nb	<0.05	nb	0.06	0.05	mg/kg TS	GC-MS
Phenanthren	nb	<0.05	nb	0.26	0.05	mg/kg TS	GC-MS
Anthracen	nb	<0.05	nb	0.43	0.05	mg/kg TS	GC-MS
Fluoranthen	nb	<0.05	nb	1.5	0.05	mg/kg TS	GC-MS
Pyren	nb	<0.05	nb	1.3	0.05	mg/kg TS	GC-MS
Benz(a)anthracen	nb	<0.05	nb	1.5	0.05	mg/kg TS	GC-MS
Chrysen	nb	<0.05	nb	1.6	0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	nb	0.05	nb	3.2	0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	nb	<0.05	nb	1.3	0.05	mg/kg TS	GC-MS
Benzo(a)pyren	nb	<0.05	nb	1.6	0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	nb	<0.05	nb	1.9	0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	nb	<0.05	nb	0.42	0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	nb	<0.05	nb	1.7	0.05	mg/kg TS	GC-MS
Gesamt PAK	nb	0.05	nb	17.12	-	mg/kg TS	GC-MS

Parameter	Probennummer				Best	Einheit	Methode/	
	4598	4599	4600	4601	grenze		Verfahren	
TOC400	nb	nb	nb	nb	0.1	%TS	exterr	
Schwermetalle n. VBBo	(Fraktion <2mm)		<u> </u>					
Blei	49	27	nb	21	2	mg Pb/kg TS	ICP-OES	
Cadmium	nb	0.20	nb	0.16	0.05	mg Cd/kg TS	ICP-OES	
Kupfer	nb	19	nb	18	0.1	mg Cu/kg TS	ICP-OES	
Zink	nb	75	nb	65	0.2	mg Zn/kg TS	ICP-OES	
Polycyclische aromatis	Polycyclische aromatische Kohlenwasserstoffe (PAK) n. VBBo (Fraktion <2mm)							
Naphthalin	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS	
Acenaphthylen	0.10	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS	
Acenaphthen	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS	
Fluoren	<0.05	<0.05	<0.05	<0.05	0.05	mg/kg TS	GC-MS	
Phenanthren	0.16	0.08	<0.05	<0.05	0.05	mg/kg TS	GC-MS	
Anthracen	0.18	0.06	<0.05	<0.05	0.05	mg/kg TS	GC-MS	
Fluoranthen	1.0	0.25	0.11	<0.05	0.05	mg/kg TS	GC-MS	
Pyren	1.0	0.24	0.09	<0.05	0.05	mg/kg TS	GC-MS	
Benz(a)anthracen	1.2	0.21	0.08	<0.05	0.05	mg/kg TS	GC-MS	
Chrysen	1.4	0.25	0.10	<0.05	0.05	mg/kg TS	GC-MS	
Benzo(b)fluoranthen	2.5	0.43	0.18	0.08	0.05	mg/kg TS	GC-MS	
Benzo(k)fluoranthen	1.0	0.18	0.06	<0.05	0.05	mg/kg TS	GC-MS	
Benzo(a)pyren	1.5	0.26	0.10	<0.05	0.05	mg/kg TS	GC-MS	
Indeno(1,2,3-c,d)pyren	1.4	0.25	0.10	<0.05	0.05	mg/kg TS	GC-MS	
Dibenz(a,h)anthracen	0.27	0.06	<0.05	<0.05	0.05	mg/kg TS	GC-MS	
Benzo(g,h,i)perylen	1.2	0.22	0.08	<0.05	0.05	mg/kg TS	GC-MS	
Gesamt PAK	12.91	2.49	0.90	0.08	-	mg/kg TS	GC-MS	

Parameter	Probennummer				Best	Einheit	Methode/
	4602				grenze		Verfahren
TOC400	nb				0.1	%TS	exterr
Schwermetalle n. VBBo	(Fraktion <2mm)						
Blei	nb				2	mg Pb/kg TS	ICP-OES
Cadmium	nb				0.05	mg Cd/kg TS	ICP-OES
Kupfer	nb				0.1	mg Cu/kg TS	ICP-OES
Zink	nb				0.2	mg Zn/kg TS	ICP-OES
Polycyclische aromatis	che Kohlenwassersto	offe (PAK) n. VBBo (F	raktion <2mm)				
Naphthalin	nb				0.05	mg/kg TS	GC-MS
Acenaphthylen	nb				0.05	mg/kg TS	GC-MS
Acenaphthen	nb				0.05	mg/kg TS	GC-MS
Fluoren	nb				0.05	mg/kg TS	GC-MS
Phenanthren	nb				0.05	mg/kg TS	GC-MS
Anthracen	nb				0.05	mg/kg TS	GC-MS
Fluoranthen	nb				0.05	mg/kg TS	GC-MS
Pyren	nb				0.05	mg/kg TS	GC-MS
Benz(a)anthracen	nb				0.05	mg/kg TS	GC-MS
Chrysen	nb				0.05	mg/kg TS	GC-MS
Benzo(b)fluoranthen	nb				0.05	mg/kg TS	GC-MS
Benzo(k)fluoranthen	nb				0.05	mg/kg TS	GC-MS
Benzo(a)pyren	nb				0.05	mg/kg TS	GC-MS
Indeno(1,2,3-c,d)pyren	nb				0.05	mg/kg TS	GC-MS
Dibenz(a,h)anthracen	nb				0.05	mg/kg TS	GC-MS
Benzo(g,h,i)perylen	nb				0.05	mg/kg TS	GC-MS
Gesamt PAK	nb				-	mg/kg TS	GC-MS

Bei der Berechnung des Gesamt PAK-Wertes werden die Einzelwerte, welche unter der Bestimmungsgrenze liegen, nicht berücksichtigt.

geprüft: Dr. Ivan Beranek

Zofingen, 22. August 2022

Die Prüfergebnisse beziehen sich ausschliesslich auf die Prüfgegenstände. Ohne schriftliche Genehmigung der ENVILAB AG darf der Bericht nicht auszugsweise vervielfältigt werden.

Detaillinformationen zum Messverfahren sowie zu Messunsicherheiten und Prüfdaten sind auf Anfrage erhältlich.

SachbearbeiterIn: Christian Steiner